首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homogenization in open sets with holes   总被引:1,自引:0,他引:1  
Let Qr be a cylindrical bar with r cylindrical cavities having generators parallel to those of Qr. Let Ω be the cross-section of the bar, Ω1 the cross-section of the domain occupied by the material and Ωi(i = 1,…, r) the cross- sections of the cavities:
Ω?i ? Ω Ω?iΩ?k = φ, i ≠ k
. The study of the elastic torsion of this bar leads to the following problem [see 2., 3., 267–320)]:
Δ?r + 2μα = 0 in Ω1
?r¦?Ω = 0
(1)
?r = constant oni; i = 1,…, r
where μ is the shear modulus of the material, α is the angle of twist and ?r represents the stress function. In this paper the problem (1) with an increasing number of holes which are distributed periodically is considered. One would like to know if ?r has a limit ?as r → + ∞, and if so, the equation satisfied by this limit. This is an “homogenization” problem — the heterogeneous bar Qr is replaced by a homogeneous one, the response of which under torsion approximates as closely as possible that of Qr. A more general problem will be studied and the case of elastic torsion will be obtained as an application. The proof uses the energy method [see Lions (Collège de France, 1975–1977), Tartar (Collège de France, 1977)] and extension theorems. A related problem is the homogenization of a perforated plate [cf. Duvaut (to appear)].  相似文献   

2.
Zarankiewicz (Colloq. Math.2 (1951), 301) raised the following problem: Determine the least positive integer z(m, n, j, k) such that each 0–1-matrix with m rows and n columns containing z(m, n, j, k) ones has a submatrix with j rows and k columns consisting entirely of ones. This paper improves a result of Hylten-Cavallius (Colloq. Math.6 (1958), 59–65) who proved: [k2]12 ? limn→∞inf z(n, n, 2, k)n?32 ? limn→∞sup z(n, n, 2, k)n?32 ? (k ? 1)12. We prove that limn→∞ z(n, n, 2, k)n?32 exists and is equal to (k ? 1)12. For the special case where k = 2 resp. k = 3 this result was proved earlier by Kövari, Sos and Turan (Colloq. Math.3 (1954), 50–57) resp. Hylten-Cavallius.  相似文献   

3.
Consider the nonlinear integro-differential equation ut(x, t) = ∝0t a(t?τ)??xσ(ux(x, τ)) dτ + f(x, t), 0 < x <, 0 < t < T, with appropriate initial and boundary conditions. This problem serves as a model for one-dimensional heat flow in materials with memory. The numerical solution via finite elements was discussed in B. Neta [J. Math. Anal. Appl.89 (1982), 598–611]. In this paper we compare the results obtained there with finite difference approximation from the point of view of accuracy and computer storage. It turns out that the finite difference method yields comparable results for the same mesh spacing using less computer storage.  相似文献   

4.
Let G be a semisimple noncompact Lie group with finite center and let K be a maximal compact subgroup. Then W. H. Barker has shown that if T is a positive definite distribution on G, then T extends to Harish-Chandra's Schwartz space C1(G). We show that the corresponding property is no longer true for the space of double cosets K\GK. If G is of real-rank 1, we construct liner functionals Tp ? (Cc(K\GK))′ for each p, 0 < p ? 2, such that Tp(f 1 f1) ? 0, ?f ? Cc(K\GK) but Tp does not extend to a continuous functional on Cp(K\GK). In particular, if p ? 1, Tv does not extend to a continuous functional on C1(K\GK). We use this to answer a question (in the negative) raised by Barker whether for a K-bi-invariant distribution T on G to be positive definite it is enough to verify that T(f 1 f1) ? 0, ?f ? Cc(K\GK). The main tool used is a theorem of Trombi-Varadarajan.  相似文献   

5.
In this Note we present some results on the existence of radially symmetric solutions for the nonlinear elliptic equation
(1)Mλ,Λ+(D2u)+up=0,u?0inRN.
Here N?3, p>1 and Mλ,Λ+ denotes the Pucci's extremal operators with parameters 0<λ?Λ. The goal is to describe the solution set as function of the parameter p. We find critical exponents 1<ps+<p1+<pp+, that satisfy: (i) If 1<p<p1+ then there is no nontrivial solution of (1). (ii) If p=p1+ then there is a unique fast decaying solution of (1). (iii) If p1<p?pp+ then there is a unique pseudo-slow decaying solution to (1). (iv) If pp+<p then there is a unique slow decaying solution to (1). Similar results are obtained for the operator Mλ,Λ?. To cite this article: P.L. Felmer, A. Quaas, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 909–914.  相似文献   

6.
Four equations are presented relating the well-known Catalan numbers and the Motzkin numbers mn, defined by
m(x) = 1 + xm(x) + x2m2(x) = n=0 mnxn,
first encountered in Th. Motzkin's paper (Bull. Amer. Math. Soc.54 (1948), 352–360) in a circle chording setting.In this paper five pairs of subsets of the plane trees provide natural settings for the four equations. In these settings the equations are immediate consequences of “natural correspondences” of the plane tree families.  相似文献   

7.
In this paper some recursion formulas and asymptotic properties are derived for the numbers, denoted by N(p, q), of irreducible coverings by edges of the vertices of complete bipartite (labeled) graphs Kp,q. The problem of determining numbers N(p, q) has been raised by I. Tomescu (dans “Logique, Automatique, Informatique,” pp. 269–423, Ed. Acad. R.S.R., Bucharest, 1971). A result concerning the asymptotic behavior of the number of irreducible coverings by cliques of q-partite complete graphs is obtained and it is proved that limn→∞ I(n)1n2 = 3112, limn→∞ (log M(n))1n = 313, and limn→∞C(n)1n(nln n) = 1e, where I(n) and M(n) are the maximal numbers of irreducible coverings, respectively, coverings by cliques of the vertices of an n-vertex graph, and C(n) is the maximal number of minimal colorings of an n-vertex graph. It is also shown that maximal number of irreducible coverings by n ? 2 cliques of the vertices of an n-vertex graph (n ≥ 4) is equal to 2n?2 ? 2 and this number of coverings is attained only for K2,n?2 and the value of limn→∞ I(n, n ? k)1n is obtained, where I(n, n ? k) denotes the maximal number of irreducible coverings of an n-vertex graph by n ? k cliques.  相似文献   

8.
Let q=1,…,n?1 and D be a bounded convex domain in Cn of finite type m. We construct two integral operators Tq and Tq such that for all p∈N,Tq,Tq:Cp0,q(bD)→Cp+1/m0,q?1(bD) are continuous, and for all (0,q)-forms h continuous on bD with ?bh continuous on bD too, with the additional hypothesis when q=n?1 that ∫bDhφ=0 for all φCn,0(bD) ??b-fermée, we show h=??b(Tq?Tq)h+(Tq+1?Tq+1)??bh. For this construction, we use the Diederich–Fornæss support function of Alexandre (Publ. IRMA Lille 54 (III) (2001)). To prove the continuity of Tq, we integrate by parts and take care of the tangential derivatives. The normal component in z of the kernel of Tq will have a bad behaviour, so, in order to find a good representative of its equivalence class, we isolate the tangential component of the kernel and then integrate by parts again. To cite this article: W. Alexandre, C. R. Acad. Sci. Paris, Ser. I 338 (2004).  相似文献   

9.
We consider a real semi-simple Lie group G with finite center and a maximal compact sub-group K of G. Let G=Kexp(a+)K be a Cartan decomposition of G. For xG denote ∥x∥ the norm of the a+-component of x in the Cartan decomposition of G. Let a>0,b>0 and 1?p,q?∞. In this Note we give necessary and sufficient conditions on a,b such that for all K-bi-invariant measurable function f on G, if eax2fLp(G) and eb∥λ∥2F(f)∈Lq(a+1) then f=0 almost everywhere. To cite this article: S. Ben Farah, K. Mokni, C. R. Acad. Sci. Paris, Ser. I 336 (2003).  相似文献   

10.
On a finite simple graph G = (X,E), p players pursuers A1, ∴, Ap and one player evader B who move in turn along the edges of G are considered. The p pursuers A1, ∴, Ap want to catch B who tries to escape. R. Nowakowski and P. Winkler [Discrete Math.43 (1983), 235–240] and A. Quilliot [“Thèse de 3° cycle,” pp. 131–145, Université de Paris VI, 1978] already characterized the graphs such that one pursuer is sufficient to catch the evader B. Very recently, M. Aigner and M. Fromme [Appl. Discrete Math., in press] proved that if G is a planar graph, three pursuers are sufficient to catch the evader B. This result is extended, showing that if G is a graph with a given genus k, then 3 + 2k pursuers are enough to “arrest” the evader B.  相似文献   

11.
If T is an n × n matrix with nonnegative integral entries, we define a transformation T: Cn → Cn by w = Tz where
W1=j=1nzjtij (1?i?n).
We consider functions f(z) of n complex variables which satisfy a functional equation giving f(Tz) as a rational function of 1f(z) and we obtain conditions under which such a function f(z) takes transcendental values at algebraic points.  相似文献   

12.
13.
For an open set Ω ? RN, 1 ? p ? ∞ and λ ∈ R+, let W?pλ(Ω) denote the Sobolev-Slobodetzkij space obtained by completing C0(Ω) in the usual Sobolev-Slobodetzkij norm (cf. A. Pietsch, “r-nukleare Sobol. Einbett. Oper., Ellipt. Dgln. II,” Akademie-Verlag, Berlin, 1971, pp. 203–215). Choose a Banach ideal of operators U, 1 ? p, q ? ∞ and a quasibounded domain Ω ? RN. Theorem 1 of the note gives sufficient conditions on λ such that the Sobolev-imbedding map W?pλ(Ω) λ Lq(Ω) exists and belongs to the given Banach ideal U: Assume the quasibounded domain fulfills condition Ckl for some l > 0 and 1 ? k ? N. Roughly this means that the distance of any x ? Ω to the boundary ?Ω tends to zero as O(¦ x ¦?l) for ¦ x ¦ → ∞, and that the boundary consists of sufficiently smooth ?(N ? k)-dimensional manifolds. Take, furthermore, 1 ? p, q ? ∞, p > k. Then, if μ, ν are real positive numbers with λ = μ + v ∈ N, μ > λ S(U; p,q:N) and v > N/l · λD(U;p,q), one has that W?pλ(Ω) λ Lq(Ω) belongs to the Banach ideal U. Here λD(U;p,q;N)∈R+ and λS(U;p,q;N)∈R+ are the D-limit order and S-limit order of the ideal U, introduced by Pietsch in the above mentioned paper. These limit orders may be computed by estimating the ideal norms of the identity mappings lpnlqn for n → ∞. Theorem 1 in this way generalizes results of R. A. Adams and C. Clark for the ideals of compact resp. Hilbert-Schmidt operators (p = q = 2) as well as results on imbeddings over bounded domains.Similar results over general unbounded domains are indicated for weighted Sobolev spaces.As an application, in Theorem 2 an estimate is given for the rate of growth of the eigenvalues of formally selfadjoint, uniformly strongly elliptic differential operators with Dirichlet boundary conditions in L2(Ω), where Ω fulfills condition C1l.For an open set Ω in RN, let W?pλ(Ω) denote the Sobolev-Slobodetzkij space obtained by completing C0(Ω) in the usual Sobolev-Slobodetzkij norm, see below. Taking a fixed Banach ideal of operators and 1 ? p, q ? ∞, we consider quasibounded domains Ω in RN and give sufficient conditions on λ such that the Sobolev imbedding operator W?pλ(Ω) λ Lq(Ω) exists and belongs to the Banach ideal. This generalizes results of C. Clark and R. A. Adams for compact, respectively, Hilbert-Schmidt operators (p = q = 2) to general Banach ideals of operators, as well as results on imbeddings over bounded domains. Similar results over general unbounded domains may be proved for weighted Sobolev spaces. As an application, we give an estimate for the rate of growth of the eigenvalues of formally selfadjoint, uniformly strongly elliptic differential operators with Dirichlet boundary conditions in L2(Ω), where Ω is a quasibounded open set in RN.  相似文献   

14.
15.
It is proved that Wigner's semicircle law for the distribution of eigenvalues of random matrices, which is important in the statistical theory of energy levels of heavy nuclei, possesses the following completely deterministic version. Let An=(aij), 1?i, ?n, be the nth section of an infinite Hermitian matrix, {λ(n)}1?k?n its eigenvalues, and {uk(n)}1?k?n the corresponding (orthonormalized column) eigenvectors. Let v1n=(an1,an2,?,an,n?1), put
Xn(t)=[n(n-1)]-12k=1[(n-1)t]|vn1uf(n-1)|2,0?t?1
(bookeeping function for the length of the projections of the new row v1n of An onto the eigenvectors of the preceding matrix An?1), and let finally
Fn(x)=n-1(number of λk(n)?xn,1?k?n)
(empirical distribution function of the eigenvalues of Ann. Suppose (i) limnannn=0, (ii) limnXn(t)=Ct(0<C<∞,0?t?1). Then
Fn?W(·,C)(n→∞)
,where W is absolutely continuous with (semicircle) density
w(x,C)=(2Cπ)-1(4C-x212for|x|?2C0for|x|?2C
  相似文献   

16.
If A and B are C1-algebras there is, in general, a multiplicity of C1-norms on their algebraic tensor product AB, including maximal and minimal norms ν and α, respectively. A is said to be nuclear if α and ν coincide, for arbitrary B. The earliest example, due to Takesaki [11], of a nonnuclear C1-algebra was Cl1(F2), the C1-algebra generated by the left regular representation of the free group on two generators F2. It is shown here that W1-algebras, with the exception of certain finite type I's, are nonnuclear.If C1(F2) is the group C1-algebra of F2, there is a canonical homomorphism λl of C1(F2) onto Cl1(F2). The principal result of this paper is that there is a norm ζ on Cl1(F2) ⊙ Cl1(F2), distinct from α, relative to which the homomorphism λ ⊙ λl: C1(F2) ⊙ C1(F2) → Cl1(F2) ⊙ Cl1(F2) is bounded (C1(F2) ⊙ C1(F2) being endowed with the norm α). Thus quotients do not, in general, respect the norm α; a consequence of this is that the set of ideals of the α-tensor product of C1-algebras A and B may properly contain the set of product ideals {I ? B + A ? J: I ? A, J ? B}.Let A and B be C1-algebras. If A or B is a W1-algebra there are on AB certain C1-norms, defined recently by Effros and Lance [3], the definitions of which take account of normality. In the final section of the paper it is shown by example that these norms, with α and ν, can be mutually distinct.  相似文献   

17.
Explicit and asymptotic solutions are presented to the recurrence M(1) = g(1), M(n + 1) = g(n + 1) + min1 ? t ? n(αM(t) + βM(n + 1 ? t)) for the cases (1) α + β < 1, log2αlog2β is rational, and g(n) = δnI. (2) α + β > 1, min(α, β) > 1, log2αlog2β is rational, and (a) g(n) = δn1, (b) g(n) = 1. The general form of this recurrence was studied extensively by Fredman and Knuth [J. Math. Anal. Appl.48 (1974), 534–559], who showed, without actually solving the recurrence, that in the above cases M(n) = Ω(n1 + 1γ), where γ is defined by α + β = 1, and that limn → ∞M(n)n1 + γ does not exist. Using similar techniques, the recurrence M(1) = g(1), M(n + 1) = g(n + 1) + max1 ? t ? n(αM(t) + βM(n + 1 ? t)) is also investigated for the special case α = β < 1 and g(n) = 1 if n is odd = 0 if n is even.  相似文献   

18.
The nonorientable genus of K4(n) is shown to satisfy:
γ(K4(n))=2(n?1)2 for n ? 3
,
γ(K4(2))=3, γ(K4(1))=1
.  相似文献   

19.
Let k be Z[12], Q or R, and set A = k[x,y](x2 + y2 ? 1). We compute K2(A) and K3(A). Our method is to construct a map ? : K1(k[i])→K1 + 1(A) and compare this to a localization sequence.We give three applications. We show that ? accounts for the primitive elements in K2(A), and compare our results to computations of Bloch [1] for group schemes. Secondly, we consider the problem of basepoint independence, and indicate the interplay of geometry upon the K-theory of affine schemes obtained by glueing points of Spec(A). Third, we can iterate the construction to compute the K-theory of the torus ring A ?kA.  相似文献   

20.
Let C be a convex subset of Rn. Given any elastic shock solution x(·) of the differential inclusionẍ(t)+NC(x(t))∋0,t>0,the bounce of the trajectory at a regular point of the boundary of C follows the Descartes law. The aim of the paper is to exhibit the bounce law at the corners of the boundary. For that purpose, we define a sequence (Cε) of regular sets tending to C as ε→0, then we consider the approximate differential inclusion ẍε(t)+NCε(xε(t))∋0, and finally we pass to the limit when ε→0. For approximate sets defined by Cε=C+εB (where B is the unit euclidean ball of Rn), we recover the bounce law associated with the Moreau–Yosida regularization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号