首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
This paper studies a novel gas cyclone with a cylindrical filter face installed in the center from the vortex finder to the bottom hopper. The experimental results show that this composite cyclone has a higher collection efficiency and a lower pressure drop than the original cyclone. The mechanisms for the improvement are analyzed by both physical experiments and numerical simulations. By measuring dust samples collected at different places it is revealed that the center filter can prevent fine particles from entering the inner vortex and escaping, which accounts for the increase of the collection efficiency. In addition, the flow field of the composite cyclone is simulated by computational fluid dynamics and compared with that of the original cyclone. The analysis shows that with the filter layer installed, the swirling flow disappears in the vortex finder, which decreases the kinetic energy dissipation and hence lowers the pressure drop.  相似文献   

2.
The three-dimension gas-particle flow in a spiral cyclone is simulated numerically in this paper. The gas flow field was obtained by solving the three-dimension Navier-Stokes equations with Reynolds Stress Model (RSM). It is shown that there are two regions in the cyclone, the steadily tangential flow in the spiral channel and the combined vortex flow in the centre. Numerical results for particles trajectories show that the initial position of the particle at the inlet plane substantially affects its trajectory in the cyclone. The particle collection efficiency curves at different inlet velocities were obtained and the effects of inlet flow rate on the performance of the spiral cyclone were presented. Numerical results also show that the increase of flow rate leads to the increase of particles collection efficiency, but the pressure drop increases sharply.  相似文献   

3.
This paper presents a numerical simulation of the flow inside a cyclone separator at high particle loads. The gas and gas–particle flows were analyzed using a commercial computational fluid dynamics code. The turbulence effects inside the separator were modeled using the Reynolds stress model. The two phase gas–solid particles flow was modeled using a hybrid Euler–Lagrange approach, which accounts for the four-way coupling between phases. The simulations were performed for three inlet velocities of the gaseous phase and several cyclone mass particle loadings. Moreover, the influences of several submodel parameters on the calculated results were investigated. The obtained results were compared against experimental data collected at the in-house experimental rig. The cyclone pressure drop evaluated numerically underpredicts the measured values. The possible reason of this discrepancies was disused.  相似文献   

4.
旋风分离器减阻杆结构及减阻前后流场的测定与分析   总被引:11,自引:0,他引:11  
王连泽  彦启森 《实验力学》1998,13(4):469-476
报告了在旋风分离器内安装不同断面形状及尺寸的细杆(简称减阻杆)后对流动阻力降低及安装减阻杆前后旋风分离器内流场变化的测定结果,得出了减阻幅度与减阻杆插入长度和迎风面积及背风面曲率半径成正比、减阻杆使切向速度及轴向速度梯度减小、径向上静压梯度减小和轴向上逆压梯度减小等结论.本文同时对减阻杆的减阻机理及减阻时保证分离效率或提高分离效率的原因进行了分析.  相似文献   

5.
In this paper, a new type of finned plate heat exchanger (FPHE) is presented to recover the waste heat from exhaust flue gases. A finned plate configuration causes low pressure drop and it is especially appropriate for heat transfer at the flue gas side. Meanwhile, this paper presents a detailed experimental and numerical study of convection heat transfer and pressure drop of the new structure. Three-dimensional numerical simulation results using the CFD code FLUENT6.3 were compared with experimental data to select the best model. The heat transfer and pressure drop with different geometry pattern was then studied numerically using the selected model. And the velocity field and temperature distribution of air flow in the finned plate channel are presented with different geometry patterns. These results provide insight into improved designs of FPHEs.  相似文献   

6.
旋风分离器压力损失及减阻杆的研究   总被引:6,自引:0,他引:6  
本文介绍通过安装旋风分离器减阻杆前后压力损失及分离效率的测定,了解减阻杆对分离器性能的影响.根据流场测定结果,分析了减阻杆的减阻机理及减阻杆减阻时可保证分离效率的原因.  相似文献   

7.
The cost-optimized design of heat exchangers requires a fast but reliable calculation of pressure drop which makes a major contribution to running costs. For cocurrent and counter-current flow a simple approximating calculation method is presented, taking into account the variation of the fluid properties along the flow path. For any practical case reliable results are obtained only by calculating both the pressure drop and the local overall heat transfer coefficient at least at two points of the heat exchanger. In the special case of a gas in a turbulent flow and when, as usual, the major resistance to heat transfer is caused by the gas, it is sufficient to calculate only the pressure drop and at one point only. Pressure drops calculated exactly or by the proposed approximation compare well.  相似文献   

8.
Wettability is an important parameter in micro-scale flow patterns. Previous research has usually been conducted in conventional microtubes due to limitations of visualizing flow patterns and fabricating microchannels. However, most microchannels in practical applications have rectangular shape. Furthermore, pressure drop is closely related with flow pattern. Hence, we studied water liquid and nitrogen gas flows in rectangular microchannels with different wettabilities. The rectangular glass microchannels were fabricated from photosensitive glass, whose surface is hydrophilic. The surface of one was silanized using octadecyl-trichloro-silane (OTS) to prepare a hydrophobic microchannel. The two-phase flow pattern was visualized with a high-speed camera and a long distance microscope. The frictional pressure drop in the microchannel was measured directly with embedded pressure ports. The flow pattern and pressure drop in the hydrophobic microchannel were totally different from those in the hydrophilic microchannel. Finally, the two-phase frictional pressure drop was analyzed based on the flow patterns of different wettabilities.  相似文献   

9.
In order to study the heat transfer and pressure drop on four types of internal heat exchangers (IHXs) of a CO2 system, the experiment and numerical analysis were performed under a cooling condition. The configuration of the IHXs was a coaxial type and a micro-channel type. Two loops on the gas cooler part and the evaporator part were made, for experiment. And the section-by-section method and Hardy-Cross method were used for the numerical analysis. The capacity and pressure drop of the IHX are larger at the micro-channel type than at the coaxial type. When increasing the mass flow rate and the IHX length the capacity and pressure drop increase. The pressure drop of the evaporator loop is much larger than that of the gas cooler loop. The performance of the IHX was affected with operating condition of the gas-cooler and evaporator. The deviations between the experimental result and the numerical result are about ±20% for the micro-channel type and ±10% for the coaxial type. Thus, the new CO2 heat transfer correlation should be developed to precisely predict a CO2 heat transfer.  相似文献   

10.
Theoretical investigations were performed on the developed laminar flow and convective heat transfer characteristics for incompressible gases flow through rectanglar micropassages with constant wall heat flux. Mathematical models were proposed for considering the change in viscosity and thermal conductivity of gas in the wall-adjacent region from the kinetic theory. The dimensionless velocity distribution and corresponding pressure drop, the dimensionless temperature distribution and corresponding heat transfer characteristics were both simulated numerically, and the results were compared to other report simulations [10–12] with brief discussions.  相似文献   

11.
The present study investigates experimentally two-phase flow patterns and pressure drop of ethanol and CO2 in a converging or diverging rectangular microchannel. The two-phase flow pattern visualization is made possible using a high speed video camera. The increased superficial gas velocity due to the acceleration effect and the large pressure drop in a converging channel may result in the elongation of bubbles in slug flow, while the decreased superficial velocity owing to the deceleration effect and the possible pressure rise in the diverging channel may cause shortening of bubbles in slug flow significantly. For both types of channel, the collision and merger of two consecutive bubbles may take place and result in necking of bubbles. Two-phase flow pressure drop in the converging microchannel increases approximately linearly with the increasing liquid or gas flow rate with the frictional pressure drop being the major contributor to the channel pressure drop. In the diverging microchannel, the deceleration effect results in the pressure rise and counteracts the frictional pressure drop. Consequently, for low liquid flow rates the channel pressure drop increases only slightly with the gas flow rate while it is low and a reversed trend appears while it is high. For high liquid flow rates the effect of increasing gas flow rate on channel pressure drop is much more significant; a more significant reverse trend of the effect of gas flow rate is present in the region of high gas flow rates. The two-phase frictional multiplier in the converging or diverging microchannel is quite insensitive to the liquid flow rate and can be fitted very well within ±15% based on the Lockhart–Martinelli equation with a modified Chisholm parameter for the diverging microchannel and together with a modified coefficient for the X−2 term for the converging microchannel.  相似文献   

12.
A fluid flow and heat transfer model has been developed for the reactive, porous bed of the biomass gasifier to simulate pressure drop, temperature profile in the bed and flow rates. The conservation equations, momentum equation and energy equation are used to describe fluid and heat transport in porous gasifier bed. The model accounted for drag at wall, and the effect of radial as well as axial variation in bed porosity to predict pressure drop in bed. Heat transfer has been modeled using effective thermal conductivity approach. Model predictions are validated against the experiments, while effective thermal conductivity values are tested qualitatively using models available in literature. Parametric analysis has been carried out to investigate the effect of various parameters on bed temperature profile and pressure drop through the gasifier. The temperature profile is found to be very sensitive to gas flow rate, and heat generation in oxidation zone, while high bed temperature, gas flow rate and the reduction in feedstock particle size are found to cause a marked increase in pressure drop through the gasifier. The temperatures of the down stream zones are more sensitive to any change in heat generation in the bed as compared to upstream zone. Author recommends that the size of preheating zone may be extended up to pyrolysis zone in order to enhance preheating of input air, while thermal insulation should not be less than 15 cm.  相似文献   

13.
Foam lift is one of the most cost effective methodologies for unloading gas wells. The surfactants are either injected intermittently or continuously to lift the liquid to the surface. By reducing the gravitational gradient and increasing the frictional gradient, the critical velocity at which liquid loading occurs is shifted to lower gas velocities. Currently, we do not have a methodology to predict the critical velocity (at the transition boundary of annular and intermittent flow) and the pressure drop under foam flow conditions.To address this, we measured several foam flow characteristics in both small scale and large scale facilities. Small scale facility involved measurement of foam carryover capacity as a function of time and surfactant concentration. Large scale facility involved measurement of liquid holdup, pressure drop, fraction of gas trapped in foam and foam holdup in 40-ft 2-in. and 4-in. tubing.We developed closure relationships for liquid hold up, foam holdup, fraction of gas trapped in the foam and interfacial friction factor by combining the small scale data with the data collected in the large scale experiments. These closure relationships are applicable to four different surfactants tested. A new transition criterion was developed and successfully used to predict onset of liquid loading under foam flow. Using a force balance over the gas core in annular flow, we developed a new procedure to calculate the pressure drop under foam flow conditions. We compared our model results with actual measurements in the large scale facility. Our model was reasonably able to predict the pressure drop within ±30%. The reason for such a large variance is that the small scale facility was not able to capture all the characteristics of the foam which were observed in the large scale facility. It is very difficult to reproduce the foam characteristics exactly in two different experiments. This is discussed further in this paper.The procedure developed is the only one currently available to calculate the pressure drop under the foam flow conditions using the small scale data. It is superior to conventional annular flow pressure drop prediction models which are currently available in the literature.  相似文献   

14.
As one of the key devices in the high temperature gas turbine system, cross-corrugated recuperators provide high heat transfer capabilities with compact size, light weight, strong mechanical strength and are mandatory to achieve 30 % electrical efficiency or higher for micro turbine engines. Flow in such geometries is usually laminar with lower Reynolds numbers. In order to understand mechanisms of flowing and heat transfer, periodic fully developed fluid flow and heat transfer in two types of cross-corrugated structures with inclination angle at 90° are investigated numerically and experimentally. Periodicity was used to reduce the complexity of the channel geometry and enables the smallest possible segment of the flow channel to be modeled. The velocity and temperature distributions were obtained in the three-dimensional complex domain. Besides a detailed flow analysis, comparison of the local heat and mass transfer and the pressure losses for these geometries are presented. It is shown that the flow phenomena caused by the different geometries were of significant influence on the homogeneity and on the quantity of the local heat and mass transfer as well as on the pressure drop. As a recuperator for micro turbine engines, cross-corrugated sinusoidal channels are more preferable to triangular channels.  相似文献   

15.
In this study, steady-state forced convection heat transfer and pressure drop characteristics in a horizontal rectangular cross-sectioned duct, baffles mounted on the bottom surface with different inclination angles were investigated experimentally in the Reynolds number range from 1 × 103 to 1 × 104. The study was performed under turbulent flow conditions. Effects of different baffle inclination angles on flow and heat transfer were studied. Results are also presented in terms of thermal enhancement factor. It is observed that increasing in baffle inclination angle enhances the heat transfer and causes an increase in pressure drop in the duct.  相似文献   

16.
边增元 《力学进展》1990,20(2):145-158
热流体力学是一门涉及传热学、流体力学和热力学的交叉学科,并把重点放在讨论热过程对流体流动的影响。它由5部分组成:①热阻力。在某些情况下热阻力的存在对通道中的流体流量和换热系数有重大影响。借助于热阻力系数的定义和分析表达式,不仅可以预示单相通道流中的压力降,而且能用简便的方法预示气-液两相通道流中的压力降和临界热流。②热绕流。运用“虚质量源”和“热偶极子”的概念,对热绕流现象进行了分析和数值研究。它可在热除尘、粒子样品收集和热设备中流量分配等方面获得广泛的应用。③热驱动。不仅在重力场中,而且在如离心力场、表面张力场和电磁力场中也存在着热驱动流。着重讨论了流体运动的起因及其带来的后果,它包括环境污染、传热强化和同位素分离系数的提高等,④热不稳定性。重点讨论了热不稳定性的物理机理。用各种动力学方法所得到的流动不稳定性的临界准则对材料加工、热减阻、水源热污染等都是十分重要的。⑤热优化。研究了基于熵产生最小(热力学第二定律)为目标函数的流动和传热过程的优化。探讨了在一定条件下热力学第一定律效率和第二定律效率的内在联系。  相似文献   

17.
The effect of tube diameter on two-phase frictional pressure drop was investigated in circular tubes with inner diameters of 0.6, 1.2, 1.7, 2.6 and 3.4 mm using air and water. The gas and liquid superficial velocity ranges were 0.01-50 m/s and 0.01-3 m/s, respectively. The gas and liquid flow rates were measured and the two-phase flow pattern images were recorded using high-speed CMOS camera. Unique flow patterns were observed for smaller tube diameters. Pressure drop was measured and compared with various existing models such as homogeneous model and Lockhart-Martinelli model. It appears that the dominant effect of surface tension shrinking the flow stratification in the annular regime is important. It was found that existing models are inadequate in predicting the pressure drop for all the flow regimes visualized. Based on the analysis of present experimental frictional pressure drop data a correlation is proposed for predicting Chisholm parameter “C” in slug annular flow pattern. For all other flow regimes Chisholm’s original correlation appears to be adequate except the bubbly flow regime where homogeneous model works well. The modification results in overall mean deviation of pressure drop within 25% for all tube diameters considered. This approach of flow regime based modification of liquid gas interaction parameter appears to be the key to pressure drop prediction in narrow tubes.  相似文献   

18.
During gas–solid mixture conveying in a dense phase, material is conveyed in dunes on the bottom of the pipeline, or as a pulsating moving bed. This phenomenon increases the pressure drop and power consumption. We introduce a new technique to reduce the pressure drop, which is termed the perforated double tube. To validate this new model, the gas–solid flow pattern and pressure drop were studied numerically and experimentally. The power consumption was also studied experimentally. Numerical studies were performed by the Eulerian–Lagrangian approach to predict gas and particle movement in the pipeline. Comparisons between the numerical predictions and the experimental results for the gas–solid flow patterns and pressure drop show good agreement.  相似文献   

19.
Several properties of ceramic foams render them promising substrates for various industrial processes. For automotive applications, the foam properties that need to be further studied include the substrate impact on the exhaust gas flow, in terms of pressure drop and flow uniformity. In this paper, pressure drop measurements are performed with different honeycomb and ceramic foam substrates, and pressure drop correlations are discussed. The flow uniformity upstream and downstream of the substrates is evaluated using particle image velocimetry. The results show that ceramic foam substrates induce higher pressure drop, while increasing the uniformity of the flow. In contrast to honeycomb monoliths, the flow uniformity downstream of ceramic foams does not decrease with increasing flow velocity. The higher flow uniformity of ceramic foams is not only caused by their higher pressure drop, but also by flow homogenization that occurs inside the ceramic foam structure, as a result of the momentum exchange perpendicular to the main flow direction.  相似文献   

20.
An experiment is carried out to investigate the characteristics of the augmentation of heat transfer and pressure drop by different strip-type inserts in small tube having an inside diameter of 2.0 mm. The effects of the imposed wall heat flux, mass flux, strip inserts with various configurations (heights, widths, pitches) on the measured augmentative heat transfer and pressure drop are examined in detail. In order to obtain insight into the fluid flow phenomena, flow visualization was also made to observe the detailed fluid flow characteristics of the present tubes inserted with strip-type inserts. In addition, comparisons are made with a plain tube having the same length, heat transfer area and experimental conditions. The measured heat transfer coefficients and pressure drops for this small pipe are also emphasized to compare with those for larger pipes. Furthermore, in order to compare results from the different configurations of strip-type inserts, several enhancement factors and performance ratios are defined to account for the effects of augmentation. Moreover, correlation equations for the heat transfer coefficient and pressure drop of the present study are proposed.The financial support extended by the National Science Council of the Republic of China through grant No. NSC-89-2212-E-230-004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号