首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we present results of flow visualisation, pressure gradient measurements, and liquid holdup measurements for air-water flow without and with surfactants in vertical pipes with diameters of 34 mm, 50 mm, and 80 mm. The surfactants cause the formation of foam. This foam has a larger volume and a smaller density than the liquid. The larger volume results in a larger pressure gradient at large gas flow rates. At small gas flow rates, the lower density of the foam causes the transition between the regular annular flow regime and the irregular churn flow regime to shift to lower gas flow rates. As a result foam reduces the pressure gradient and the liquid holdup at small gas flow rates. Surfactants reduce the pressure gradient more effectively for thinner liquid films at the wall; therefore, they are more effective for small pipe diameters and small liquid flow rates.  相似文献   

2.
Most gas wells produce some amount of liquid. The liquid is either condensate or water. At high rates, the gas is able to entrain liquid to the surface; however, as gas well depletes, the liquid drops back in a gas well (called liquid loading) creating a back pressure on the reservoir formation. Addition of surfactants to the well to remove liquid is one of the common methods used in gas wells. Liquid loading in vertical gas wells with and without surfactant application was investigated in this study. Anionic, two types of amphoteric (amphoteric I and amphoteric II), sulphonate and cationic surfactants were tested in 2-inch and 4-inch 40-feet vertical pipes. Pressure gradient and liquid holdup are measured. Visual observation with a high speed camera was used to gain insight into the direction of foam flow in intermittent flow and foam film flow under annular flow conditions.Liquid loading is initiated when the liquid film attached to the wall in annular flow starts flowing downwards. Introduction of foam causes the gas velocity at which film reversal occurs to decrease; this shift increases with increasing surfactant concentration and it is more pronounced in 2-inch pipe than in 4-inch pipe. That is, the benefit of surfactants is much more pronounced in 2-inch pipe than in 4-inch pipe. The reason for postponement of liquid loading is reduction in the liquid holdup at low gas velocities which reduces the liquid holdup in foam flow compared to air-water flow. However, at higher gas velocities, the pressure drop in 2-inch compared to 4-inch pipe increases rapidly as the surfactant concentration increases. The selection of optimum concentration of the surfactant is a balance between the reductions in the gas velocity at which liquid loading occurs compared to increase in the frictional loss as the concentration increases. We provide guidelines about the selection of the surfactant concentration.Visual observations using high speed camera show differences in the behavior under foam flow conditions. Unlike air-water flow, the liquid film attached to the wall is replaced by thick foam capturing the gas bubbles. The type of roll waves which carry the liquid in 2-inch pipe is different than what was observed in 4-inch pipe. Compared to 4-inch pipe, the roll waves in 2-inch pipe are much thicker. This partly explains the differences in 2-inch versus 4-inch pipe behavior.  相似文献   

3.
Usually, foam in a porous medium flows through a small and spatially varying fraction of available pores, while the bulk of it remains trapped. The trapped foam is under a pressure gradient corresponding to the pressure gradient imposed by the flowing foam and continuous wetting liquid. The imposed pressure gradient and coalescence of the stationary foam lamellae periodically open flow channels in the trapped foam region. Foam lamellae in each of these channels flow briefly, but channels are eventually plugged by smaller bubbles entering into the trapped region. The result is a cycling of flow channels that open and close throughout the trapped foam, leading to intermittent pulsing of foam flow in that region.The dynamic behavior of foam trapped in porous media is modeled here with a pore network simulator. We predict the magnitude of the pressure drop leading to the onset of flow of foam lamellae in the region containing trapped foam. This mobilization pressure drop depends only on the number of lamellae in the flow path and on the geometry of the pores that make up this path.The principles learned in this study allow us to predict the fraction of foam that is trapped in a porous medium under given flow conditions. We present here the first analytic expression for the trapped foam fraction as a function of the pressure gradient, and of the mean and standard deviation of the pore size distribution. This expression provides a missing piece for the continuum foam flow models based on the moments of the volume-averaged population balance of foam bubbles.  相似文献   

4.
Drag-reducing polymers were added to air and water flowing in a stratified configuration in a horizontal 2.54 cm pipe. The interface was covered with large amplitude roll waves, that have been called pseudo-slugs, over a range of flow conditions. The damping of small wavelength waves causes a large decrease in the interfacial stress and, therefore, an increase in the liquid holdup. At superficial gas velocities greater than 4 m/s the transition to slug flow is delayed in that it occurs at larger liquid holdups. This observation is interpreted by assuming that turbulence in slugs is damped. This increases the shedding rate of a slug and, therefore, its stability. The pressure drop can increase or decrease when polymers are added. The increase in holdup is accompanied by an increase in gas velocity, which causes an increase in the pressure drop. The decrease in the interfacial stress has the opposite effect.  相似文献   

5.
We develop improved correlations for two-phase flow friction factor that consider the effect of the relative velocity of the phases, based on a database that includes 2560 gas–liquid flow experiments in horizontal pipes. The database includes a wide range of operational conditions and fluid properties for two-phase friction factor correlations. We classify the experiments by liquid holdup ranges to obtain composite analytical expressions for two-phase friction factor vs. the Reynolds number by fitting logistic dose curves to the experimental data with. We compute the liquid holdup values used to classify the experimental data using correlations proposed previously. The Reynolds number is based on the mixture velocity and the liquid kinematic viscosity. The Fanning friction factor for gas–liquid is defined in term of the mixture velocity and density. Additionally, we sort the experimental data by flow regime and obtain the two-phase friction factor improved correlations for dispersed bubble, slug, stratified and annular flow for different holdup ranges. We report error estimates for the predicted vs. measured friction factor together with standard deviation for each correlation. The accuracy of the correlations developed in this study is compared with that of other 21 correlations and models widely available in the specialized literature. Since different authors use different definitions for friction factors and Reynolds numbers, we present comparisons of the predicted pressure drop for each and every data point in the database. In most cases our correlations predict the pressure drop with much greater accuracy than those presented by previous authors.  相似文献   

6.
In this work, the influence of surfactants on air–water flow was studied by performing experiments in a 12 metre long, 50 mm inner diameter, vertical pipe at ambient conditions. High-speed visualisation of the flow shows that the morphology of the air–water interface determines the formation of foam. The foam subsequently alters the flow morphology significantly. In annular flow, the foam suppresses the roll waves, and a foamy crest is formed on the ripple waves. In the churn flow regime, the flooding waves and the downwards motion of the liquid film are suppressed by the foam. The foam is transported in foam waves moving upwards superposed on an almost stagnant foam substrate at the pipe wall. Foam thus effectively reduces the superficial gas velocity at which the transition from annular to churn flow occurs. These experiments make more clear how surfactants can postpone liquid loading in vertical pipes, such as in gas wells.  相似文献   

7.
The Lockhart-Martinelli model is extended for the case of seperated flow, enabling theoretical relationships to be developed for holdup and pressure loss. For the stratified flow case the analytical solution gives close agreement with pressure loss data and with the results of the analyses of both Johannessen and of Taitel and Dukler. The holdup relation which was derived gave good agreement with data for the situation where interfacial shear is unimportant. For the case of annular separated flow the analytical solution gives close agreement with pressure loss data for large diameter pipes where liquid surface effects are minimal. The holdup relation on the other hand was severely in error but an empirical modification did serve to give good agreement with experimental data.

A further theoretical extension of the Lockhart-Martinelli approach enabled a general pressure loss correlation to be developed for annular type flows. Lack of systematic data for large diameter pipes, particularly for the steam-water case, hampers the application of the derivation, but, despite this draw-back, a general correlation is developed which accounts for the effect of pipe diameter and is useful for prediction of pressure loss in steam-water systems.  相似文献   


8.
The analysis of reported Newtonian liquid-gas stratified flow data for horizontal circular ducts indicated that an interfacial level gradient (ILG) and therefore non-uniform flow tended to exist over a wide range of test conditions. Significant ILG can be present if high-viscosity liquids and low gas velocities' are used to produce stratified flow. ILG can reduce the liquid holdup and can possibly expand the stratified flow regime by delaying the transition to wavy stratified and/or intermittent flow. Use of the Lockhart-Martinelli parameters Φ2L and Φ2G is invalid in stratified flow if ILG is present because of unequal axial pressure gradients in the gas and liquid phases. During uniform stratified flow, especially in the laminar liquid-turbulent gas ftow regime, the combined one-dimensional mechanical energy equations can be used in dimensionless form to accurately predict the liquid holdup and pressure drop. In future stratified flow experiments, the axial pressuregradient in both phases should be measured.  相似文献   

9.
Experimental data for gas holdup in liquid slugs are reported for two different pipe sizes (2.58 cm and 5.12 cm I.D.). A simple empirical correlation is developed and is shown to be a significant improvement over the only other published correlation proposed by Hubbard (1965). The results of this investigation are important for the development of a mechanistic model for the prediction of pressure drop and holdup for slug flow in pipes.  相似文献   

10.
Severe slugging can occur in a pipeline-riser system operating at low liquid and gas rates. The flow of gas into the riser can be blocked by liquid accumulation at the base of the riser. This can cause formation of liquid slugs of a length equal to or longer than the height of the riser. A cyclic process results in which a period of no liquid production into the separator occurs, followed by a period of very high liquid production. This study is an experimental and theoretical investigation of two methods for eliminating this undesirable phenomenon, using choking and gas lift. Choking was found to effectively eliminate or reduce the severity of the slugging. However, the system pressure might increase to some extent. Gas lift can also eliminate severe slugging. While choking reduces the velocities in the riser, gas lift increases the velocities, approaching annular flow. It was found that a relatively large amount of gas was needed before gas injection would completely stabilize the flow through the riser. However, gas injection reduces the slug length and cycle time, causing a more continuous production and a lower system pressure. Theoretical models for the elimination of severe slugging by gas lift and choking have been developed. The models enable the prediction of the flow behavior in the riser. One model is capable of predicting the unstable flow conditions for severe slugging based on a static force balance. The second method is a simplified transient model based on the assumption of a quasi-equilibrium force balance. This model can be used to estimate the characteristics of the flow, such as slug length and cycle time. The models were tested against new severe slugging data acquired in this study. An excellent agreement between the experimental data and the theoretical models was found.  相似文献   

11.
A two-equation model is applied to a stratified two-phase flow system to predict turbulent transport mechanisms in both phases.In the present analysis, the effects of interfacial waves on the flow field are formulated in terms of boundary conditions for the gas-liquid interface. For the gas phase, the wavy interface has such flow separation effects as a rough surface in a single-phase flow. While for the liquid phase, the waves generate turbulant energy which is transported progressively toward a lower wall region. The analytical results are in good agreement with available data regarding pressure drop, holdup and velocity profiles.  相似文献   

12.
As part of a study on the effect of tube diameter on the mean drop size and liquid film flow rate in annular two-phase flow, data was obtained for the vertical upflow of an air-water system in a 20 mm internal diameter tube, held at a pressure of 1.5 bar and ambient temperature. This complements data taken in earlier experiments on 10 and 32 mm tubes. Increases in the superficial gas velocity caused reductions in the mean drop size whilst increasing the liquid mass flux in all but the lowest gas velocity case, caused the drop size to rise. Comparisons were made between the current drop size data and that from a 10 mm and 32 mm internal diameter tube, for similar conditions of temperature and pressure. The current drop size measurements, which fall between those from earlier work, confirm the dependence of drop size on tube diameter. The performance of several drop size correlations have been tested. Because the correlations do not account for the influence of tube diameter, they fail to predict the drop size data accurately. The influence of gas and liquid flow rate on the measured film flow rate show trends similar to those seen in data from the 10 mm and 32 mm diameter tubes. Models, to calculate the entrained liquid mass flux were tested; good predictions were given.  相似文献   

13.
Some hydrodynamic aspects of 3-phase inverse fluidized bed   总被引:2,自引:0,他引:2  
Hydrodynamics of 3-phase inverse fluidized bed is studied experimentally using low density particles for different liquid and gas velocities. The hydrodynamic characteristics studied include pressure drop, minimum liquid and gas fluidization velocities and phase holdups. The minimum liquid fluidization velocity determined using the bed pressure gradient, decreases with increase in gas velocity. The axial profiles of phase holdups shows that the liquid holdup increases along the bed height, whereas the solid holdup decreases down the bed. However, the gas holdup is almost uniform in the bed.  相似文献   

14.
Measurements of gas holdups in bubble columns of 0.16, 0.30 and 0.33 m diameter were carried out. These columns were operated in co-current flow of gas and liquid phases and in semibatch mode. The column of 0.33 m diameter was operated at elevated pressures of up to 3.6 MPa. Nitrogen was employed as the gas phase and deionized water, aqueous solutions of ethanol and acetone and pure acetone and cumene as the liquid phase. The effects of differing liquid properties, gas density (due to elevated pressure), temperature, column diameter and superficial liquid velocity on gas holdup were studied. The gas holdup measurements were utilized by differential pressure measurements at different positions along the height of the bubble columns which allowed for the identification of axial gas holdup profiles. A decrease of gas holdup with increasing column diameter and an increase of gas holdup with increasing pressure was observed. The effect of a slightly decreasing gas holdup with increasing liquid velocity was found to exist at smaller column diameters. The use of organic solvents as the liquid phase resulted in a significant increase in gas holdup compared to deionized water. It is found that published gas holdup models are mostly unable to predict the results obtained in this study.  相似文献   

15.
Non-Newtonian liquid gas stratified flow data were obtained using 0.052 and 0.025 m dia horizontal circular ducts. Unless the liquid velocity was very low, the flow pattern generally observed was non-uniform stratified flow having an interfacial level gradient between the two phases. The Heywood-Charles model is valid for predicting the pressure drop and liquid holdup in pseudoplastic (shear thinning) non-Newtonian liquid-gas uniform stratified flow. Two-phase drag reduction, which is predicted by the Heywood-Charles model did not occur because there was a transition to semi-slug flow before the model criteria were reached. Interfacial liquid and gas shear stresses were compared.  相似文献   

16.
The effect of tube diameter on two-phase frictional pressure drop was investigated in circular tubes with inner diameters of 0.6, 1.2, 1.7, 2.6 and 3.4 mm using air and water. The gas and liquid superficial velocity ranges were 0.01-50 m/s and 0.01-3 m/s, respectively. The gas and liquid flow rates were measured and the two-phase flow pattern images were recorded using high-speed CMOS camera. Unique flow patterns were observed for smaller tube diameters. Pressure drop was measured and compared with various existing models such as homogeneous model and Lockhart-Martinelli model. It appears that the dominant effect of surface tension shrinking the flow stratification in the annular regime is important. It was found that existing models are inadequate in predicting the pressure drop for all the flow regimes visualized. Based on the analysis of present experimental frictional pressure drop data a correlation is proposed for predicting Chisholm parameter “C” in slug annular flow pattern. For all other flow regimes Chisholm’s original correlation appears to be adequate except the bubbly flow regime where homogeneous model works well. The modification results in overall mean deviation of pressure drop within 25% for all tube diameters considered. This approach of flow regime based modification of liquid gas interaction parameter appears to be the key to pressure drop prediction in narrow tubes.  相似文献   

17.
Fischer–Tropsch (F–T) synthesis is an important route to achieve the clean fuel production. The performance of gas–liquid separation equipment involving in the progressive condensation and separation of light and heavy hydrocarbons in the oil-gas products has become a bottleneck restricting the smooth operation of the F–T process. In order to remove the bottleneck, a gas–liquid vortex separator with simple structure, low pressure drop and big separation capacity was designed to achieve the efficient separation between gas and droplets for a long period. The RSM (Reynolds Stress Model) and DPM (Discrete Phase Method) are employed to simulate the flow characteristics and liquid distribution in the separator. The results show that the separation efficiency is influenced by the flow field and liquid phase concentration in the annular zone. The transverse vortex at the top of spiral arm entrains the droplets with small diameter into the upper annular zone. The entrained droplets rotate upward at an angle of about 37.4°. The screw pitch between neighbor liquid threads is about 0.3 m. There is a top liquid ring in the top of annular zone, where the higher is the liquid phase concentration, the lower is the separation efficiency. It is found that by changing the operating condition and the annular zone height the vortex can be strengthened but not enlarged by the inlet velocity. The screw pitch is not affected by both inlet velocity and annular zone height. The liquid phase concentration in the top liquid ring decreases with both the increases of inlet velocity and annular zone height. The total pressure drop is almost not affected by the annular zone height but is obviously affected by the inlet velocity. When the height of annular zone is more than 940 mm, the separation efficiency is not changed. Therefore, the annular zone height of 940 mm is thought to be the most economical design.  相似文献   

18.
Three-phase fluidized beds are found to have wide applications in process industries. The present investigation essentially comprises of the studies on gas holdup, liquid holdup and bed porosity in three-phase fluidized beds with coaxially placed disc promoter. Holdup data were obtained from bed expansion and pressure drop measurements. Analysis of the data was done to elucidate the effects of dynamic and geometric parameters on gas holdup, liquid holdup and bed porosity. Data were correlated and useful equations were obtained from empirical modeling.  相似文献   

19.
Liquid foam is a dense random packing of gas or liquid bubbles in a small amount of immiscible liquid containing surfactants. The liquid within the Plateau borders, although small in volume, causes considerable difficulties to the investigation of the spatial structure and physical properties of foams, and the situation becomes even more complicated as the fluid flows. To solve these problems, a discrete model of two-dimensional liquid foams on the bubble scale is proposed in this work. The bubble surface is represented with finite number of nodes, and the liquid within Plateau borders is discretized into lattice particles. The gas in bubbles is treated as ideal gas at constant temperatures. This model is tested by choosing an arbitrary shape bubble as the initial condition. This then automatically evolves into a circular shape, which indicates that the surface energy minimum routine is obeyed without calling external controlling conditions. Without inserting liquid particle among the bubble channels, periodic ordered and disordered dry foams are both simulated, and the fine foam structures are developed. Wet foams are also simulated by inserting fluid among bubble channels. The calculated coordination number, as a function of liquid fractions, agrees well with the standard values.  相似文献   

20.
The gas–liquid flow in a rotor-stator spinning disc reactor, with co-feeding of gas and liquid, is studied for high gas volumetric throughflow rates and high gas/liquid volumetric flow ratios. High speed imaging and spectral analysis of pressure drop signals are employed to analyse the flow. Two mechanisms of bubble formation are observed, one due to gas overpressure leading to large irregular bubbles, and one due to liquid turbulent vortices leading to small, well-defined bubbles. The two mechanisms lead to three distinct gas dispersion regimes, distinguished by their characteristic oscillations in pressure drop. At low rotational Reynolds numbers (Reω < 0.4 · 106), in the gas spillover regime, the gas is dispersed as large bubbles only. Above this critical Reω, small bubbles are sheared off as well, thus forming a heterogeneous dispersion. At sufficiently high Reω, depending on the gas flow rate, the gas is homogeneously dispersed as small bubbles. The maximum gas flow that can be dispersed as small bubbles is linearly proportional to the local energy dissipation rate. The understanding of the bubble formation mechanisms and pressure signature allows prediction and detection of the prevailing hydrodynamic regime in scaled up spinning disc reactors and for different reaction fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号