首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Pandey S  Acree WE  Fetzer JC 《Talanta》1998,47(3):769-778
Applicability of the cetylpyridinium (CPy(+)) cation as a selective fluorescence quenching agent for discriminating between alternant versus nonalternant polycyclic aromatic hydrocarbons (PAHs) is examined for 25 representative solutes dissolved in two aqueous micellar cetylpyridinium chloride (CPC)+zwitterionic surfactant solvent media. Experimental results show that the CPy(+) cation effectively quenched fluorescence emission of all 10 alternant PAHs studied despite the presence of strong intramicellar coulombic interactions. Emission intensities of the 15 nonalternant PAHs also decreased upon addition of CPC to the zwitterionic surfactant solutions. Reduction in emission intensities for the nonalternant PAHs is rationalized in terms of changes in micellar structure caused by the coulombic interactions, rather than from loss of quenching selectivity by the CPy(+) cation.  相似文献   

2.
Wade DA  Tucker SA 《Talanta》2000,53(3):571-578
Pyridinium chloride (PC) is examined as a selective, fluorescence quenching agent for alternant as opposed to nonalternant polycyclic aromatic hydrocarbons (PAHs) in two polar solvents - water and acetonitrile. Nine alternant and 13 nonalternant PAHs were dissolved in water and acetonitrile and a total of 0.2 M of pyridinium chloride was added. The resulting change in fluorescence intensity was observed and reported as the Stern-Volmer quenching constant. Results show that PC is a selective quencher in both polar solvents. It selectively quenches the fluorescence emission intensity of alternant PAHs while leaving the nonalternant PAH fluorescence emission virtually unchanged. These results agree with the selective quenching behavior seen for PC surfactant analogs, cetylpyridinium chloride (CPC) and dodecylpyridinium chloride (DDPC). Furthermore, these results illustrate that the presence of a surfactant or micelle is not a requirement for selective quenching. The selective quencher PC is applicable to situations where a surfactant is not desirable or soluble.  相似文献   

3.
Pandey S  Roy LE  Acree WE  Fetzer JC 《Talanta》1999,48(5):1736-1110
Fluorescence behavior is reported for 13 alternant and 12 nonalternant polycyclic aromatic hydrocarbons (PAHs) dissolved in aqueous micellar cetyltrimethylammonium chloride (CTAC)+dodecylpyridinium chloride (DDPC) and sodium dodecylsulfate (SDS)+DDPC mixed surfactant solvent media. Experimental measurements indicate that the dodecylpyridinium cation selectively quenches fluorescence emission of alternant PAHs. Emission intensities of nonalternant PAHs, with a few noted exceptions, essentially remain constant, irrespective of both DDPC concentration and cosurfactant headgroup charge.  相似文献   

4.
The dual role of alkylpyridinium chlorides, cetylpyridinium chloride (CPC) and dodecylpyridinium chloride (DDPC), as micellar mobile phase modifiers and selective fluorescence quenching agents of polycyclic aromatic hydrocarbons (PAHs), in micellar liquid chromatographic separation of PAHs is reported. The replacement of 0.037 M cetyltrimethylammonium chloride in the aqueous mobile phase with CPC/DDPC quencher greatly simplifies the observed fluorescence‐detected chromatograms, facilitating PAH identification. The resulting chromatograms are similar to those obtained from the conventional approach – pyridinium chloride quencher in an acetonitrile mobile phase. To quantify the quenching, the (F0 /F – 1) values from the Stern‐Volmer equation are calculated from the chromatograms and compared. The feasibility of using CPC or DDPC as a dual reagent under isocratic and gradient conditions is shown.  相似文献   

5.
Applicability of the nitromethane selective quenching rule for discriminating between alternant versus nonalternant polycyclic aromatic hydrocarbons (PAHs) is examined for 20 representative PAH solutes dissolved in micellar sodium dodecylsulfate (SDS) + cetyltrimethylammonium bromide (CTAB), SDS + dodecyltrimethylammonium bromide (DTAB), SDS + Brij-35, and SDS + sodium octanoate (SO) mixed surfactant solvent media. Experimental results show that nitromethane quenched fluorescence of all 8 alternant PAHs studied in the four different solvent systems. Unexpected quenching behavior was observed, however, in the case of nonalternant PAHs. Nitromethane quenched fluorescence emission of nonalternant PAHs dissolved in the SDS + SO solvent media, which is contrary to the selective quenching rule. In the case of the mixed anionic + cationic surfactant solvent media, nitromethane quenching selectivity was restored at concentration ratios of approximately 4?:?1 (anionic:cationic) or less.  相似文献   

6.
Applicability of the nitromethane selective quenching rule for discriminating between alternant versus nonalternant polycyclic aromatic hydrocarbons (PAHs) is examined for 20 representative PAH solutes dissolved in micellar sodium dodecylsulfate (SDS) + cetyltrimethylammonium bromide (CTAB), SDS + dodecyltrimethylammonium bromide (DTAB), SDS + Brij-35, and SDS + sodium octanoate (SO) mixed surfactant solvent media. Experimental results show that nitromethane quenched fluorescence of all 8 alternant PAHs studied in the four different solvent systems. Unexpected quenching behavior was observed, however, in the case of nonalternant PAHs. Nitromethane quenched fluorescence emission of nonalternant PAHs dissolved in the SDS + SO solvent media, which is contrary to the selective quenching rule. In the case of the mixed anionic + cationic surfactant solvent media, nitromethane quenching selectivity was restored at concentration ratios of approximately 4 : 1 (anionic:cationic) or less. Received: 22 May 1997 / Revised: 29 September 1997 / Accepted: 3 October 1997  相似文献   

7.
Patel R  Singh Patel K 《Talanta》1999,48(4):923-931
A new, simple, rapid and specific flow injection analysis (FIA) procedure for the determination of cationic surfactants (CS) i.e. dodecyltrimethylammonium bromide (DTAB), tetradecyltrimethyl-ammonium bromide (TTAB), cetyltrimethylammonium bromide (CTAB), cetylpyridinium chloride (CPC) in the environmental and commodity samples is proposed. Their determinations are based on the enhancement of colour intensity of the Fe(III)-SCN(-) complex. The value of apparent molar absorptivity of the Fe(III)-SCN(-)-CS(+) complexes in the terms of CS lie in the range of (2.10-4.30)x10(3) l mol(-1) cm(-1) at absorption maximum 475 nm. The most sensitive surfactant, cetylpyridinium chloride (CPC) imparted detection limit (absorbance >3 s) of 250 ppb CPC has been selected for the detailed studies. The working range is linear over 0.5-30.0 ppm CPC with slope, intercept, correlation coefficient and sample throughput of 0.67, 0.02, +0.99 and 100 samples h(-1), respectively. The effect of analytical and FIA variables on the determination of the surfactant and the composition of the complex are discussed. The method is free from interferences of almost all ions which commonly associated with the surfactant in the environmental samples. The analytical potentiality i.e. sensitivity, linearity, precision and optimal analytical conditions of FIA to the manual system for the determination of the surfactant are compared. It is reproducibly applicable for the analysis of CS to the various environmental i.e. ground, surface, municipal waste water, and commodity i.e. detergent, soap, shampoo samples.  相似文献   

8.
Ayala JH  Afonso AM  González V 《Talanta》1997,44(2):257-267
The presence of a micellar medium of cetylpyridinium bromide (CPB) causes, in relation to the aqueous medium, important bathochromic shifts in the excitation spectra of a considerable number of polycyclic aromatic hydrocarbons (PAHs). Furthermore, the CPB acts as a quencher, provoking inhibitions of the fluorescence intensity emitted by PAHs. The micellar inhibition factors show that, generally, the quenching affects alternant hydrocarbons to a greater extent. Some interesting relationships between the hydrocarbon structure and both the characteristic wavelengths of fluorescence spectra and the values of Deltalambda are established.  相似文献   

9.
稳态荧光探针法测定三聚季铵盐表面活性剂的胶束聚集数   总被引:5,自引:0,他引:5  
以芘为荧光探针, 十六烷基氯化吡啶(CPC)为猝灭剂, 以芘的饱和水溶液为溶剂配制表面活性剂溶液, 根据芘的荧光强度之比I1/I3随表面活性剂水溶液浓度的变化, 测定了三聚季铵盐表面活性剂CTTTA的cmc值, 测定值与表面张力法测定的cmc值一致;当猝灭剂CPC的浓度取0.1~0.3 mmol·L-1范围时, 用稳态荧光探针法测定了CTTTA的胶束聚集数. 实验数据表明, 表面活性剂溶液浓度为6~10倍cmc时, 胶束聚集数N随表面活性剂浓度增大而线性增大, 并用外推法得到CTTTA的临界胶束聚集数.  相似文献   

10.
Solubilization and interaction of azo-dye light yellow (X6G) at/with cationic surfactants cetyltrimethylammonium bromide (CTAB) and cetylpyridinium chloride (CPC) was investigated spectrophotometricaly. The effect of cationic micelles on solubilization of anionic azo dye in aqueous micellar solutions of cationic surfactants was studied at pH 7 and 25 degrees C. The binding of dye to micelles implied a bathochromic shift in dye absorption spectra that indicates dye-surfactant interaction. The results showed that the solubility of dye increased with increasing surfactant concentration, as a consequence of the association between the dye and the micelles. The binding constants, K(b), were obtained from experimental absorption spectra. By using pseudo-phase model, the partition coefficients between the bulk water and surfactant micelles, K(x), were calculated. Gibbs energies of binding and distribution of dye between the bulk water and surfactant micelles were estimated. The results show favorable solubilization of dye in CTAB micelles.  相似文献   

11.
Separations of common inorganic anions were carried out on three different surfactant coated media using carbonate/bicarbonate eluents with suppressed conductivity detection. Graphitic carbon columns (porous graphitic carbon and carbon-clad zirconia) packed with 3 microm particles have been converted into anion-exchange stationary phases by equilibration with the cationic surfactants: didodecyldimethylammonium bromide (DDAB); cetyltrimethylammonium bromide (CTAB); and cetylpyridinium chloride (CPC). Additionally, an ethylene-bridged silica column was studied with CPC coatings. Porous graphitic carbon (PGC) columns coated with DDAB exhibited pressure increases and loss of resolution at higher capacities. CPC coatings on PGC exhibited better repeatability and efficiencies of 5.0 x 10(4)plates/m. However, CPC coatings exhibited a 15% loss in retention factor with <1.2 x 10(3) column volumes on PGC. Conversely, the ethylene-bridged silica column showed complete failure in less than 8 h of use. As with PGC, carbon-clad zirconia coated with CPC showed an initial loss of capacity, but thereafter was stable for more than 1.7 x 10(3) column volumes (t(r) RSD<2%).  相似文献   

12.
The purpose of this work is to determine the values of critical premicelle concentration (CPMC), first critical micelle concentration (FCMC) and second critical micelle concentration (SCMC) of surfactants using a common spectrofluorophotometer by recording resonance Rayleigh scattering (RRS) signal without any probe. The plot of the RRS intensities at the maximum scattering wavelength (I(RRS)(max)) versus surfactant concentrations (c) was constructed to obtain the I(RRS)(max)-c curve. From the inflexions in I(RRS)(max)-c curve, the CPMC, FCMC and SCMC values of a surfactant can be obtained sensitively. The FCMC of some anionic, cationic and nonionic surfactants such as sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS), cetyltrimethylammonium bromide (CTAB), cetylpyridinium chloride (CPC), Tween-20, and Tween-80 were determined by RRS method and the values are in good agreement with those obtained from conductivity and surface tension measurements and literature values. The CPMC and SCMC of SDS and CTAB were also determined by RRS method respectively and the values conform to literature values too. Furthermore, RRS method can also be used to determine the FCMC of an amphiphilic macromolecule-hemoglobin, whose structure resembles a surfactant. From the experimental results, it is concluded that RRS method can be applied to the simultaneous determination of the CPMC, FCMC and SCMC values in a sensitive, accurate and no probe way.  相似文献   

13.
Binding of heparin with a cationic surfactant such as cetyldimethyl benzylammonium chloride (CDBAC), tetradecyldimethyl benzylammonium chloride (Zeph), cetylpyridinium bromide (CPB), tetradecane pyridinium bromide (TPB) and cetyltrimethylammonium bromide (CTAB) in a near-neutral medium can result in a significant enhancement of resonance Rayleigh scattering (RRS) intensities. The results showed that the reaction conditions and RRS spectral characteristics of these reactions are similar, but their sensitivities are obviously different. Among them, the sensitivity of CDBAC with an aryl and large molecular weight is the highest, while that of CTAB without aryl and with small molecular weight is the lowest. The detection limit for heparin of the former is 11 ng ml(-1) while that of the latter is 33 ng ml(-1). The method has better selectivity and was applied to the determination of trace amounts of heparin in sodium heparin injection samples with satisfactory results. Furthermore, it is discovered that the RRS intensity is related to the structure and molecular weight of the cationic surfactant.  相似文献   

14.
Association of a cationic surfactant cetylpyridinium chloride, CPC, with isotactic and atactic poly(methacrylic acid), i-PMA and a-PMA, respectively, in aqueous 0.01 M NaCl solutions was studied by pH and fluorescence measurements in conjunction with potentiometric studies using a surfactant-sensitive membrane electrode. pH measurements have demonstrated that the presence of an oppositely charged surfactant increases ionization of carboxyl groups on PMA at low degrees of neutralization. The increase is more pronounced in the case of i-PMA. The isotactic form of PMA is not soluble in water at zero degrees of neutralization but can be rendered soluble by the addition of CPC at the surfactant to a polyion molar ratio of around 0.4. In the solubilized complex, the positive charge of the CPC molecule is facing the polar solvent, whereas surfactant tails are oriented toward the i-PMA compact coil. Binding isotherms and cooperativity parameters show that chain tacticity has an important influence on the interaction of cetylpyridinium cation with polymethacrylate anion. At the onset of cooperative binding, the association is stronger with i-PMA than with the atactic form, as demonstrated by lower CAC values and higher values of the cooperativity parameters. In contrast, more surfactant is bound by a-PMA in the region where polyion becomes saturated with surfactant ions. Results are interpreted by taking into account local chain conformations as obtained from quantum mechanical semiempirical molecular orbital calculations. Greater hydrophobicity and possibly higher charge density of i-PMA on one hand and more flexibility of the a-PMA chain on the other are held responsible for these observations.  相似文献   

15.
The chemical pollutants 2‐nitrophenol (2‐NP) and 2,4,6‐trinitrophenol (2,4,6‐TNP) were studied for their separation from water by the paper capillary permeation adsorption technique by the use of the four cationic surfactants dodecyltrimethylammonium chloride (DTAC), tetradecyltrimethylammonium bromide (TTAB), cetyltrimethylammonium bromide (CTAB), cetylpyridinium chloride (CPC) as regulators. The effect of pH and the concentration of surfactant on the separatability have been investigated. A nearly 100% separatability was obtained for each pollutant at its optimum pH and surfactant concentration. It was shown that the separation was accomplished via surface adsorption onto the fibers of paper. The change in separatability at basic pH 11 with surfactant variety was analyzed. The result shows that the surfactant with a longer chain alkyl group is more effective for the separation of 2‐NP and the surfactants with 16 carbons in the long chain alkyl group are most effective. The surfactants with 12 carbons or more in the long alkyl group but containing no aromatic group such as pyridyl group are equally effective for accomplishing an efficient separation of 2,4,6‐TNP. Selective separation of 2‐NP from an admixture of 2‐NP plus 2,4,6‐TNP was attempted. The optimum surfactant for each pollutant was tested with seawater for removing the pollutant. The goal of this study is to search for an optimum cationic surfactant and optimum separation conditions for nitrophenols.  相似文献   

16.
The interaction of iron III salts and cetylpyridinium chloride (CPC) has been studied at the air/water and silica/water interfaces. The surface tension of cetylpyridinium chloride has been determined in aqueous solutions in the presence of iron III chloride and iron III nitrate at two constant pH values, namely, 3.5 and 1.2. It is shown that the surface tension of the cationic surfactant depends upon the ionic strength of the solution through the pH adjustment in the presence of the former salt but not in the presence of the latter. The effect of iron III nitrate on the surface tension of CPC is similar to that of potassium nitrate, indicating that the iron III various-hydrolyzed species do not interfere with the composition of the air/water interface. The competitive adsorption of iron III nitrate salt and the cationic surfactant at a silica/water interface was next investigated. The adsorption isotherms were determined at pH 3.5. It is shown that although the iron III ions, which were added to the silica dispersion in the presence of the cetylpyridinium ions, were strongly bound to the anionic surface sites, the surfactant ions are not salted out in the solution but remain in close vicinity of the silica surface. Conversely as the cationic surfactant is added first to the silica dispersion in the presence of the adsorbed iron III ions, the metal ions and the surfactant ions are both coadsorbed onto the silica surface. It is suggested that iron III hydrolyzed or free cations and the cationic surfactant molecules may not compete for the same adsorption sites onto the silica surface.  相似文献   

17.
The ability of pyridinium chloride (PC) to selectively quench alternant as opposed to nonaltemant polycyclic aromatic hydrocarbons (PAHs) in organized media is examined. PC was previously shown to be a selective quenching agent of alternant PAHs in neat polar solvents. Carboxylate-terminated poly(amido) amine (PAMAM-CT) dendrimers and anionic surfactants--sodium dodecanoate (SD), sodium octanoate (SO), and sodium dodecylsulfate (SDS)--were chosen as the solubilizing media for this study. Selective quenching of alternant PAHs is observed in the presence of the SDS and SO micelles. However, the extent of PAH quenching in SO is significantly reduced compared to PAHs dissolved in either water or SDS micelles. In the case of the smaller generation 4.5 (G4.5) PAMAM-CT dendrimers, PC was prevented from quenching both alternant and nonalternant PAHs to any appreciable extent. The dendrimer is able to "protect" the PAHs from the PC quencher that resides at the dendrimer surface. Both, SD and G5.5 PAMAM-CT precipitated out of solution with the addition of PC. Differences between traditional micelles and "unimolecular micelle" dendrimers were also examined. These studies further confirm that the PAHs did not reside in the "analogous" palisade region of the dendrimers as they do in micelles. The PAHs must reside in the outermost branches of the dendrimer, but sufficiently far enough away from the charged surface groups, where PC associated, to prevent fluorescence quenching. This work further illustrates the differences between "unimolecular micelle" dendrimers and traditional micelles.  相似文献   

18.
A comprehensive study the effect of acetonitrile (ACN) with four cationic surfactants, viz. tetradecyltrimethylammonium bromide (TTAB), cetyltrimethylammonium bromide (CTAB), cetylpyridinium chloride (CPC) and cetylpyridinium bromide (CPB) was made by using the conductivity, surface tension, fluorescence and FTIR techniques. Significant micellar, interfacial and thermodynamic properties were studied by the tensiometeric and conductivity methods. The critical micelle concentration (CMC), aggregation number (Nagg), and Stern–Volmer constants (Ksv) have also been studied by the steady state fluorescence method using pyrene as probe. The fluorescence study also supports the CMC results obtained from conductivity and surface tension. FTIR was used to ascertain that the strength of intermolecular interactions such as hydrogen bonding, ion–ion pair interactions and induced dipole interactions between the surfactants and ACN depend upon the head-group of the surfactants. The interaction of surfactants with ACN is energetically favorable and occurs via direct interactions between the surfactants and ACN. The results further revealed that the strength of interactions between the surfactants and ACN follows the order: TTAB > CTAB > CPC > CPB.  相似文献   

19.
The micellization behavior of hexadecylpyridinium chloride usually called cetylpyridinium chloride (CPC) in presence of sodium salicylate ( NaSal) has been investigated. The surface tension, conductance and microcalorimetric methods have been employed to determine the critical micellar concentration (CMC) of CPC and NaSal mixed in different molar proportions. The interfacial area occupied by CPC in presence of NaSal, the free energy of adsorption and the energetics of micellizatton have been evaluated. The enthalpy of interaction of NaSal with CPC micelle has also been estimated from microcalorimetric measurements. The shear viscosity of the CPC-NaSal combination at equimolar proportion at different surfactant concentration and temperature, and also the shear viscosity of CPC-NaSal combination at different molarity ratios with a fixed surfactant concentration have been determined. The static and dynamic light scattering measurements of the CPC-NaSal system at different composition and in presence of NaCl have been reported. Worm-like micelles of concentration dependent dimension and intermicellar repulsive interaction have been envisaged.  相似文献   

20.
Reactive black 5 (RB-5) dye was removed from a water stream using two cationic surfactants, cetyltrimethylammonium bromide (CTAB) and cetylpyridinium chloride (CPC), via micellar enhanced ultrafiltration. Three membranes with different pore size were used for the determination of rejection coefficient and permeate flux of the solution at 1.5 bar trans-membrane pressure (TMP). The two surfactants (CPC and CTAB) played an almost negligible role in rejection efficiency with 5000 and 10,000 molecular weight cut-off membrane (MWCO), respectively. In this case, high rejection and low permeate flux was the result of a larger molecular size of RB-5 DYE being retained by comparatively smaller sized pores of membrane via ultrafiltration. However, CPC and CTAB surfactants showed 83% and 98% rejection coefficient, respectively, at a concentration greater than their CMC values against 30,000 MWCO. Permeate flux remained low and constant in presence of 5000 and 10,000 MWCO with a small variation against 30,000 MWCO for the two surfactants, thereby no appreciable effect on both surfactant concentrations on concentration polarization was estimated. Thus, RB-5 dye alone was determined to be responsible for membrane plugging or concentration polarization and ultimately for low permeate flux. The effect of trans-membrane pressure was also investigated during this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号