首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A solid ion-pair material produced from ammonium tetraphenylborate on naphthalene (ATPB-naphthalene) provides a simple, rapid, economical and selective technique for preconcentrating iron from approximately 500 ml of aqueous solution of standard alloys and biological samples. Iron reacts with 2-(5-bromo-2-pryidlazo)-5-diethylaminophenol (5-Br-PADAP) to form a water-soluble cationic complex. When the aqueous solution of this cationic species in the pH range 3.2-8.5 is passed over the adsorbent ATPB-naphthalene at a flow rate of 1 ml min(-1), it is quantitatively retained on naphthalene as an uncharged ion-associated complex. The solid mass from the column was dissolved out with 5 ml of dimethylformamide (DMF) and iron is determined by third derivative spectrophotometry by measuring the signal d(3)A/ dlambda(3) between lambda(2)(773 nm) and lambda(3)(737 nm). The calibration curve is linear over the concentration range 0.10-25.0 mug of iron in 5 ml of DMF solution. Eight replicate determinations of 5 mug of iron gave a mean intensity (peak-to-peak signal between lambda(2) and lambda(3)) of 1.534 with a relative standard deviation of 0.90%. The sensitivity of the method is 0.307 (d(3)A/dnm(3) )/mug found from the slope of the calibration curve. The interference of a large number of anions and cations has been studied and the optimized conditions developed were utilized for the trace determination of iron in various standard alloys and biological samples.  相似文献   

2.
A solid ion-pair material produced from ammonium tetraphenylborate (ATPB) and naphthalene has been used for the preconcentration of uranium from the large volume of its aqueous complex samples. Uranium reacts with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) to form a water insoluble, coloured complex. This complex is quantitatively retained on the ATPB-naphthalene adsorbent filled in a column in the pH range 7.0–9.5 and at a flow rate of 2 ml/min. The solid mass from the column is dissolved with 5 ml of dimethylformamide (DMF) and uranium is determined by fourth-derivative spectrophotometry. The calibration curve is linear over the concentration range of 0.13–15.0 g of uranium in 5 ml of the final DMF solution. Seven replicate determinations of 6 g of uranium gave a mean peak height (peak-to-peak signal between 592 nm and 582 nm) of 1.02 with a relative standard deviation of 0.95%. The sensitivity is 0.8419 (d4A/d4)/(g ml–1) found from the slope of the calibration curve. The interference of a large number of anions and cations on the estimation of uranium has been studied and the method applied for the determination of uranium in coal fly ash, Zr-base alloy and some synthetic samples corresponding to standard alloys.  相似文献   

3.
Taher MA  Puri S  Bansal RK  Puri BK 《Talanta》1997,45(2):411-416
Iridium is preconcentrated from the large volume of its aqueous solution using 1-(2-pyridylazo-2-naphthol) (PAN) on microcrystalline naphthalene in the pH range of 4.5-6.0. The solid mass after filtration is dissolved with 5 ml of dimethylformamide (DMF) and the metal determined by first derivative spectrophotometry. The detection limit is 20 ppb (signal to noise ratio = 2) and the calibration curve is linear over the concentration range 0.25-75.0 mug in 5 ml of the final DMF solution with a correlation coefficient of 0.9996 and relative standard deviation of +/- 1.1%. Various parameters such as the effect of pH, volume of aqueous phase, choice of solvent, reagent and naphthalene concentration, shaking time and interference of a number of metal ions on the determination of trace amount of iridium have been studied in detail to optimize the conditions for its determination in synthetic samples corresponding to various standard alloys and environmental samples.  相似文献   

4.
Bhalotra A  Puri BK 《Talanta》1999,49(3):485-493
A highly sensitive, selective, economical and rapid method for the trace determination of zinc using fourth derivative spectrophotometry has been proposed with 1-2-(thiazolylazo)-2-naphthol (TAN) as an analytical reagent and ammonium tetraphenylborate (ATPB)-naphthalene as an adsorbent. Zn-TAN is quantitatively retained on ATPB naphthalene in the pH range 6.5-9.5. The calibration plot is linear in the concentration range 0.02-1.4 mug ml(-1) Zn of DMF solution. The sensitivity of the method as determined from the slope of the calibration plot is 2.640 (d(4)A/dlambda(4))/(mug ml(-1)). Nine replicate determinations of 5.0 mug of zinc in 5 ml of DMF give a mean signal height of 2.660 (peak to peak height between lambda(1)=597 nm and lambda(2)=585 nm) with a relative standard deviation of 1.1%. The various conditions have been optimized and the developed method has been used for the determination of zinc in standard alloys, environmental and pharmaceutical samples.  相似文献   

5.
Taher MA  Puri BK  Malik AK 《Annali di chimica》2001,91(5-6):319-330
A column preconcentration method has been developed for the determination of trace amounts of manganese by preconcentration on 2-nitroso-1-naphthol-4-sulfonic acid (nitroso-S)-tetradecyldimethylbenzylammonium (TDBA) naphthalene as an adsorbent using a simple funnel tipped glass tube. Manganese reacts with nitroso-S to form a water soluble brown colored chelate anion. The chelate anion forms a water insoluble Mn-Nitroso-S-TDBA ion pair on naphthalene packed in a column in the pH range 9.6-10.5 at a flow rate of 1-2 ml/min. The solid mass consisting of manganese complex and naphthalene is dissolved in 5 ml of dimethylformamide (DMF) and the metal determined by second derivative spectrophotometry. The calibration curve is linear in the concentration range 0.25-35.0 micrograms of Mn in 5 ml of the final DMF solution. Eight replicate determinations of 25 micrograms of standard manganese solution give a mean peak height of 4.0 with a correlation coefficient of 0.9995 and relative standard deviation of +/- 1.1%. The sensitivity was calculated to be 0.502(d2 A/d lambda 2)/microgram ml-1 from the slope of the calibration curve. The detection limit was 0.020 microgram ml-1 for manganese at the minimum instrumental settings (signal to noise ratio = 2). Various parameters effecting the method such as the effect of pH, volume of aqueous phase and interference of a number of metal ions on the determination of manganese have been evaluated to optimize the conditions for its determination in standard alloys and biological samples.  相似文献   

6.
Taher MA 《Talanta》2000,52(2):181-188
Zinc is quantitatively retained on 2-(5-bromo-2-pyridylazo)-5-diethylamminophenol (5-BrPADAP)-ammonium tetraphenylborate with microcrystalline naphthalene or by a column method in the pH range 7.5-9.0 from a large volume of aqueous solutions of various samples. After filtration, the solid mass consisting of the zinc complex and naphthalene was dissolved with 5 ml of dimethylflarmamide and the metal was determined by atomic absorption spectrometry. Zinc complex can alternatively be quantitatively adsorbed on ammonium tetrphenylborate-naphthalene adsorbent packed in a column and determined similarly. The calibration curve is linear 0.05-4.0 ppb in dimethylformamide solution. Eight replicate detenninations of 1.0 ppb of zinc gave a mean absorbance of 0.124 with a relative standard deviation of 1.3%. The sensitivity for 1% absorption was 0.035 ppb. The interference of a large number of anions and cations has been studied and the optimized conditions developed were utilized for the trace determination of zinc in various standard samples.  相似文献   

7.
Taher MA 《Talanta》1999,50(3):559-567
Nickel is quantitatively retained by disodium 1-nitroso-2-naphthol-3,6-disulfonate (nitroso-R salt) and tetradecyldimethylbenzylammonium chloride (TDBA(+)Cl(-)) on microcrystalline naphthalene in the pH range 5.4-12.1 from large volumes of aqueous solutions of various alloys and biological samples. After filtration, the solid mass consisting of the nickel complex and naphthalene was dissolved with 5 ml of dimethylformamide (DMF) and the metal was determined by third derivative spectrophotometry. Nickel complex can alternatively be quantitatively adsorbed on tetradecyldimethylbenzylammonium-naphthalene adsorbent packed in a column and determined similarly. The detection limit is 10 ppb (signal to noise ratio 2) and the calibration curve is linear from 30 to 5.4x10(3) ppb in dimethylformamide solution with a correlation coefficient of 0.9997 by measuring the distance d(3)A/dlambda(3) between lambda(1) (537 nm) and lambda(2) (507 nm). Eight replicated determinations of 2.5 mug of nickel in 5 ml of dimethylformamide solution gave a mean intensity (peak-to-peak signal between lambda(1) and lambda(2)) of 0.339 with a relative standard deviation of +/-0.87%. The sensitivity of the method is 0.677 ml/mug found from the slope (d(3)A/dnm(3)) of the calibration curve. Various parameters such as the effect of pH, volume of aqueous phase and interference of a number of metal ions on the determination of nickel has been studied in detail to optimize the conditions for nickel determination in various alloys and biological samples.  相似文献   

8.
The water-soluble polymers poly(ethylenimine), quaternized poly(ethylenimine), and poly-4-vinyl-(N-benzyltrimethyl) ammonium chloride were found to be able to change the kinetics of the reaction of cobalt with nitroso-R-salt and the optical density of the cobalt complex formed. The optimum pH range for the complex formation was a wide range from 1 to 10 and at pH 2 the reaction developed instantly. The calibration graph was linear in the range 0.005-2 mug ml(-1). The effective molar absorptivity coefficient of the complex was equal to (2.8+/-0.08)10(3). A spectrophotometric determination method for cobalt with nitroso-R-salt in the presence of water-soluble polymers (before and after membrane preconcentration) and a colorimetric flow injection method were developed. For the flow injection-based spectrophotometric determination, the calibration graph was linear in the concentration range of 0-4.0 mug ml(-1) cobalt with a regression coefficient of 0.9992. The relative standard deviation (R.S.D.) for the determination of 1.0 mug ml(-1) cobalt was 0.9% (ten replicate injections), and at all concentration measured, the R.S.D. of the data was below 5.0%. The proposed FI procedure was applied to river water samples after membrane preconcentration of cobalt. The limit of detection was 4 ng ml(-1).  相似文献   

9.
Manganese is quantitatively retained on 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP)-ammonium tetraphenylborate with microcrystalline naphthalene or by a column method in the pH range 7.5-10.5 from large volumes of aqueous solutions of various samples. After filtration, each solid mass consisting of the manganese complex and naphthalene was dissolved with 5 ml of dimethylformamide and the metal was determined by flame atomic absorption spectrometry. Manganese complex can alternatively be quantitatively adsorbed on ammonium tetraphenylborate-naphthalene adsorbent packed in a column and determined similarly. About 0.1 microgram of manganese can be concentrated in a column from 500 ml of aqueous sample, where its concentration is as low as 0.2 ppb. Eight replicate determinations of 1.0 ppm of manganese gave a mean absorbance of 0.224 with a relative standard deviation of 1.8%. The sensitivity for 1% absorption was 19 ppb. The interference of a large number of anions and cations has been studied and the optimized conditions developed were utilized for the trace determination of manganese in various standard samples.  相似文献   

10.
Chromium can be quantitatively retained as 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP)-tetra-phenylborate(TPB) complex onto microcrystalline naphthalene in the pH range 4.8-5.9 from a large volume of aqueous solutions of various standard samples. After filtration, the solid mass consisting of the chromium complex and naphthalene was dissolved with 5 mL of dimethylformamide and the metal was determined by air-acetylene FAAS. A detection limit of 4 ng/mL for chromium was established. The interference of a large number of anions and cations has been studied and the optimized conditions developed were utilized for the trace determination of chromium in various standard alloys and biological samples.  相似文献   

11.
Taher MA 《The Analyst》2000,125(10):1865-1868
An atomic absorption spectrometric method for the determination of trace amounts of zinc after adsorption of its [1-(2-pyridylazo)-2-naphthol] complex on microcrystalline naphthalene has been developed. This complex is adsorbed on microcrystalline naphthalene in the pH range 3.5-7.5 from large volumes of aqueous solutions of various alloys and biological samples with a preconcentration factor of 40. After filtration, the solid mass consisting of the zinc complex and naphthalene was dissolved with 5 ml of dimethylformamide and the metal was determined by flame atomic absorption spectrometry. Zinc can alternatively be quantitatively adsorbed on [1-(2-pyridylazo)-2-naphthol]-naphthalene adsorbent packed in a column and determined similarly. About 0.5 ng of zinc can be concentrated in a column from 200 ml of aqueous sample, where its concentration is as low as 2.5 pg ml-1. The calibration curve is linear in the range 0.1-6.5 ng ml-1 in dimethylformamide solution. Eight replicate determinations of 2 ng ml-1 of zinc gave a mean absorbance of 0.145 with a relative standard deviation of 1.5%. The sensitivity for 1% absorption was 0.061 ng ml-1. Various parameters, such as the effect of pH and the interference of a number of metal ions on the determination of zinc, have been studied in detail to optimize the conditions for the determination of zinc in various standard complex materials.  相似文献   

12.
Satake M  Nagahiro T  Puri BK 《Talanta》1992,39(10):1349-1354
A solid ion-pair compound produced from sodium 1,2-dihydroxybenzene-3,5-disulphonic acid (Tiron) and tetradecyldimethylbenzylammonium chloride(TDBA) supported on naphthalene in a simple glass-tipped funnel tube provides a simple adsorbent system for preconcentrating titanium from some alloys. Titanium reacts with Tiron to form a water-soluble coloured chelate anion which in turn forms a water-insoluble stable titanium/Tiron/TDBA complex with the ion-pair on the surface of naphthalene packed in a column. Titanium is quantitatively retained on the naphthalene in the presence of L-ascorbic acid and oxalic acid in the pH range 3.0-4.5 and at a flow-rate of 1 mil/min. The metal complex and naphthalene were dissolved from the column with 5 ml of dimethylformamide(DMF), and the absorbance of the solution was measured at 398 nm. A calibration graph was linear over the range 1-18 mug of titanium in 5 ml of the final DMF solution. The complex has a molar absorptivity of 1.39 x 10(4) l.mole(-1).cm(-1) and a sensitivity of 3.44 x 10(-3) mug/cm(2) for 0.001 absorbance. Eight replicate determinations for a sample containing 12 mug of titanium gave a mean absorbance of 0.697 with a relative standard deviation of 0.82%. The interference of various ions was studied and optimum conditions were developed for the determination of titanium in various aluminium and zinc alloys.  相似文献   

13.
A procedure for separation and preconcentration of trace amounts of cadmium has been proposed. A column of analcime zeolite modified with benzyldimethyltetradecylammonium chloride and loaded with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) was used for retention of cadmium. The cadmium was quantitatively retained on the column at pH approximately 9 and was recovered from column with 5 ml of 2 M nitric acid with a preconcentration factor of 140. Anodic stripping differential pulse voltammetry was used for determination of cadmium. A 0.05 ng/ml detection limit for the preconcentration of aqueous solution of cadmium was obtained. The relative standard deviation (RSD) for eight replicate determinations at the 1 microg/ml cadmium levels was 0.31% (calculated with the peak height obtained). The calibration graph using the preconcentration system was linear from 0.01 to 150 microg/ml in final solution with a correlation coefficient of 0.9997. For optimization of conditions, various parameters such as the effect of pH, flow rate, instrumental conditions and interference of number of ions, were studied in detail. This method was successfully applied for determination of cadmium in various complex samples.  相似文献   

14.
Chromium can be quantitatively retained as 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP)-tetraphenylborate(TPB) complex onto microcrystalline naphthalene in the pH range 4.8–5.9 from a large volume of aqueous solutions of various standard samples. After filtration, the solid mass consisting of the chromium complex and naphthalene was dissolved with 5 mL of dimethylformamide and the metal was determined by air-acetylene FAAS. A detection limit of ¶4 ng/mL for chromium was established. The interference of a large number of anions and cations has been studied and the optimized conditions developed were utilized for the trace determination of chromium in various standard alloys and biological samples.  相似文献   

15.
Puri BK  Balani S 《Talanta》1995,42(3):337-344
Iron, cobalt and copper form coloured water soluble anionic complexes with disodium 1-nitroso-2-naphthol-3-6-disulphonate (nitroso R-salt). The anionic complex is retained quantitatively as a water insoluble neutral ion associated complex (M-nitroso R-TDBA) on tetradecyldimethylbenzylammonium iodide on naphthalene (TDBA(+)I(-)-naphthalene) packed column in the pH range of: Fe(III): 3.1-6.5, Co: 3.4-8.5 and Cu 5.9-8.0 when their solutions are passed individually over this adsorbent at a flow rate of 0.5-5.0 ml/min. The solid mass consisting of an ion associated metal complex along with naphthalene is dissolved out of the column with 5 ml dimethylformamide/chloroform and metals are determined spectrophotometrically. The absorbance is measured at 710 nm for iron, 425 nm for cobalt and 480 nm for copper. Beers law is obeyed in the concentration range 9.2-82 mug of iron, 425 nm for cobalt cobalt and 3.0-62 mug of copper in 5 ml of final DMF/CHCl(3) solution. The molar absorptivities are calculated to be Fe: 7.58 x 10(3), Co: 1.33 x 10(4) and Cu: 4.92 x 10(4)M(-1)cm(-1). Ten replicate determinations containing 25 mug of iron, 9.96 mug of cobalt and 3.17 mug of copper gave mean absorbances 0.677, 0.450 and 0.490 with relative standard deviations of 0.88, 0.98 and 0.92%, respectively. The interference of large number of metals and anions on the estimations of these metals has been studied. The optimized conditions so developed have been employed for the trace determination of these metals in standard alloys, waste water and fly ash samples.  相似文献   

16.
A solid co-precipitated material obtained from an ion-pair of 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) and tetraphenylborate (TPB), and microcrystals of naphthalene has been tried as an adsorbent for the column preconcentration of copper(I), iron(II), nickel(II) and Zn(II). The retention of the metal ions was found to be maximum and constant in the pH range 3.0-8.0 for Cu, 3.8-7.5 for Fe, 4.5-7.5 for Ni and 8.5-11.0 for Zn. The elements were determined by FAAS after dissolving the metal along with the adsorbent in an organic solvent (10 mL of DMF). The characteristic concentration for 1% absorption was found to be 0.0332, 0.0536, 0.0537 and 0.0142 (aqueous medium 0.0512, 0.0638, 0.1294 and 0.0216) microg mL(-1) for Cu, Fe, Ni and Zn, respectively. The calibration plot was linear in the range 1.5-20.0, 2.0-38.0, 2.5-25.0 and 0.5-15.0 micro g in the final 10 mL of DMF solution for Cu, Fe, Ni and Zn, respectively. Various parameters such as pH, volume of buffer, amount of adsorbent, flow rate, preconcentration factor and effect of diverse salts and cations were studied. The optimised conditions were utilized for the determination of Cu, Fe, Ni and Zn in various water, beverage and human hair samples.  相似文献   

17.
A solid ion-pair material produced from tetradecyldimethylbenzylammonium chloride (TDBA) and ammonium thiocyanate on naphthalene provides a simple, rapid and selective technique of preconcentrating cobalt from up to 200 ml of aqueous solution. Cobalt reacts with sodium 1-nitroso-2-naphthol-3,6-disulphonate (nitroso-R salt) to form a brown, water-soluble chelate anion. The chelate anion forms a water-insoluble Co-nitroso-R salt-TDBA complex on naphthalene packed in a column and trace cobalt is quantitatively retained on the naphthalene in the pH range 2.7–11.0 at a flow-rate of 2 ml min?1. The solid mass is stripped from the column with 5 ml of dimethylformamide (DMF) and cobalt is measured by atomic absorption spectrometry (AAS) at 241 nm. The calibration graph is linear over the concentration range 0.5–15μg Co in 5 ml of dimethylformamide solution. Seven replicate determinations of 9 μg of cobalt gave a mean absorbance of 0.095 with a relative standard deviation of 1.7%. The sensitivity for 1% absorption was 0.0834μg ml?1 (0.240 μg ml?1 for direct AAS on the aqueous solution). The proposed method was utilized for the determination of cobalt in standard aluminium alloys and steel samples.  相似文献   

18.
A preconcentration and determination methodology for vanadium at trace levels in parenteral solutions was developed. Cloud point extraction was successfully employed for the preconcentration of vanadium prior to inductively coupled plasma atomic optical emission spectrometry (ICP-OES) coupled to a flow injection (FI) system. The vanadium was extracted as vanadium-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol [V-(5-Br-PADAP)] complex, at pH 3.7 mediated by micelles of the nonionic surfactant polyoxyethylene (5.0) nonylphenol (PONPE 5.0). The extracted surfactant-rich phase (100 mul) was mixed with 100 mul of ethanol and this final volume injected into ICP-OES for the vanadium determination. Under these conditions, the 50 ml sample solution preconcentration allowed raising an enrichment factor of 250-fold; however, it was possible to obtain a theoretical enrichment factor of 500-fold. The lower limit of detection (LOD) obtained under the optimal conditions was 16 ng l(-1). The precision for 10 replicate determinations at the 2.0 mug l(-1) V level was 2.3% relative standard deviation (RSD), calculated with the peak heights. The calibration graph using the preconcentration system for vanadium was linear with a correlation coefficient of 0.9996 at levels near the detection limits up to at least 50 mug l(-1). The method was successfully applied to the determination of vanadium in parenteral solution samples.  相似文献   

19.
Taguchi S  Goto K 《Talanta》1980,27(10):819-821
Silaned glass beads are applied for the preconcentration and spectrophotometric determination of cobalt with 2-(2-pyridylazo)-5-diethylaminophenol (PADAP). Traces of cobalt are collected as the coloured PADAP complex on a column of the beads, and the complex is then eluted with a small volume of ethanol-hydrochloric acid mixture and the absorbance of the eluate is measured at 575 nm. The cobalt can easily be concentrated by a factor of 50-500 in this way, and 0.1-2 mug of cobalt in 100 ml of sample solution can be determined reproducibly. High concentrations of Fe(III), Cr(III), Pb, Zn, Cu(II), Mn(II), Cd, Al, Ca and Mg can be tolerated but Pd(II) interferes.  相似文献   

20.
Optimum conditions for the reversed-phase liquid chromatographic separation of uranium as U(VI)-F(-)-(5-Br-PADAP) [5-Br-PADAP is 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol] ternary complex on the end-capped C18 column were evaluated. The developed sensitive, selective and versatile method allows to determine uranium in the wide concentration range 0.2-120.0 mug ml(-1) (detection limit, DL, is 0.15 mug ml(-1) for 20 mul loop). Solvent mixture, acetonitrile+water (65+35, v/v) containing fluoride in concentration 3x10(-3) mol l(-1) (pH 5.5) was used as eluent. Double action of fluoride present in eluent - as stabilising agent of the ternary system and modifier of the stationary phase was evaluated. In order to prove appearance of the modifying effect of fluoride on the stationary phase the new chromatographic probe - system Zr(IV)-(5-Br-PADAP)/Zr(IV)-F(-)-(5-Br-PADAP) was introduced as a tool for the detection of F(-) presence on the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号