首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Methods for the direct determination of Ni in sea water samples by ETAAS were developed using Zeeman effect background correction system (ZEBC) and a multi-injection technique. A mass of palladium nitrate of 2.5 mug (for an injection volume of 100 mul) was used as chemical modifier. The optimum pyrolysis and atomization temperatures were 1700 and 2100 degrees C, respectively. The characteristic mass (m(0)) and characteristic concentration (C(0)), precision and accuracy were studied for different injection volumes (20, 100 and 200 mul). For an injection volume of 100 mul (five 20 mul aliquot) of sample the accuracy analysis of different certified materials (saline and non saline water) was agreeable. The total time of the proposed procedure is 6 min. A m(0) and C(0) of 34.5 pg and 0.3 mug l(-1), respectively were obtained for this injection volume (100 mul). Finally, interferences from major and minor components of sea water was studied.  相似文献   

2.
Erber D  Quick L  Winter F  Cammann K 《Talanta》1995,42(7):927-936
A new commercial system consisting of a flow injection analysis system for hydride generation coupled with a transversely heated graphite atomizer-atomic absorption spectrometer for the determination of lead is investigated in detail. The hydride generation is optimized by using an ammonium peroxodisulphate-hydrochloric acid system as oxidant and sodium borohydride as reducing reagent. The addition of sodium cumol sulphonate as surface active substance shows advantages considering efficient plumbane production. The hydride trapping and atomization in a graphite electrothermal atomizer is also optimized. The characteristic concentration was 0.74 mug/l, the detection limit was 0.70 mug/l for 500 mul sample volumes. The relative operation standard deviation of this method was smaller than 2%. Further examinations demonstrate the influence of several heavy metals on the determination of lead. Finally, the measurement of standard reference materials shows the efficiency of the method in combination with decomposition with aqua regia solutions.  相似文献   

3.
Işıldak I  Asan A  Andaç M 《Talanta》1999,48(1):219-224
A simple spectrophotometric flow-injection method is reported for the highly sensitive and fast determination of copper(II). The method is based on the formation of coloured Cu(II)-(4-methylpiperidinedithiocarbamate)(2) complex when the copper solutions are introduced into a tertiary reagent stream containing 4-methylpiperidinedithiocarbamate. The coloured complex is then selectively monitored at 435 nm. To increase interactions between copper(II) and colour forming reagent and preconcentrate of copper(II), a microcolumn containing strong cation exchange resins was placed between injection manifold and spectrophotometer. The system required no mixing chamber and allowed a sample throughput >60 sample h(-1). The calibration graph was linear in the range 5-100 mug l(-1). The detection limit was <0.5 mug l(-1) for 20 mul injection volume of copper(II) ion solution. The developed method was applied to environmental, copper processing water, and ore samples.  相似文献   

4.
A preconcentration and determination methodology for vanadium at trace levels in parenteral solutions was developed. Cloud point extraction was successfully employed for the preconcentration of vanadium prior to inductively coupled plasma atomic optical emission spectrometry (ICP-OES) coupled to a flow injection (FI) system. The vanadium was extracted as vanadium-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol [V-(5-Br-PADAP)] complex, at pH 3.7 mediated by micelles of the nonionic surfactant polyoxyethylene (5.0) nonylphenol (PONPE 5.0). The extracted surfactant-rich phase (100 mul) was mixed with 100 mul of ethanol and this final volume injected into ICP-OES for the vanadium determination. Under these conditions, the 50 ml sample solution preconcentration allowed raising an enrichment factor of 250-fold; however, it was possible to obtain a theoretical enrichment factor of 500-fold. The lower limit of detection (LOD) obtained under the optimal conditions was 16 ng l(-1). The precision for 10 replicate determinations at the 2.0 mug l(-1) V level was 2.3% relative standard deviation (RSD), calculated with the peak heights. The calibration graph using the preconcentration system for vanadium was linear with a correlation coefficient of 0.9996 at levels near the detection limits up to at least 50 mug l(-1). The method was successfully applied to the determination of vanadium in parenteral solution samples.  相似文献   

5.
An environmentally friendly,low power consuming,sensitive and compact mercury analyzer was developed for the determination of mercury in water samples by integrating a thin film dielectric barrier discharge induced cold vapor reactor and a dielectric barrier discharge optical emission spectrometer into a small polymethyl methacrylate plate(10.5 cm length×8.0 cm width×1.2 cm height).Mercury cold vapor was generated when standard or sample solutions with or without formic acid were introduced to the reactor to form thin film liquid and exposed to microplasma irradiation and subsequently separated from the liquid phase for transport to the microplasma and detection of its atomic emission.Limits of detection of 0.20 μg L~1 and 2.6 μg L~1 were obtained for the proposed system using or not using formic acid,respectively.Compared to the conventional microplasma optical emission spectrometry used for mercury analysis,this system not only retains the good limit of detection amenable to the determination of mercury in real samples,but also reduces power consumption,eliminates the generation of hydrogen and avoids the use of toxic or unstable reductant.Method validation was demonstrated by analysis of a certified reference material of water sample and three real water samples with good spike recoveries(88-102%).  相似文献   

6.
Lead hydride was generated from acid solution, containing potassium ferricyanide as an oxidizing agent, by the reaction with alkaline borohydride solution. The effects of reaction conditions (hydrochloric acid, ferricyanide and borohydride concentrations), and the lengths of reaction and stripping coils were studied. The effects of trapping temperature and argon flow rate were also investigated. Under the conditions giving the best peak area sensitivity, the detection limit (concentration giving a signal equal to three S.D. of the blank signal) was 0.12 mug l(-1) for a 1000 mul injection volume. The detection limit was improved to 0.03 mug l(-1) when the ferricyanide was purified by passage through a cation-exchange resin. Two calcium supplement materials were analyzed by the flow injection (FI)-hydride generation (HG)-electrothermal atomization atomic absorption spectrometry (ETAAS) method, giving values of 0.55 and 0.66 mug g(-1), in agreement with results obtained by previously validated methods. For a 500-mg sample the limits of detection and quantification were 0.006 and 0.02 mug g(-1), respectively.  相似文献   

7.
He Q  Zhu Z  Hu S  Jin L 《Journal of chromatography. A》2011,1218(28):4462-4467
A novel solution cathode glow discharge (SCGD) induced vapor generation was developed as interface to on-line couple high-performance liquid chromatography (HPLC) with atomic fluorescence spectrometry (AFS) for the speciation of inorganic mercury (Hg(2+)), methyl-mercury (MeHg) and ethyl-mercury (EtHg). The decomposition of organic mercury species and the reduction of Hg(2+) could be completed in one step with this proposed SCGD induced vapor generation system. The vapor generation is extremely rapid and therefore is easy to couple with flow injection (FI) and HPLC. Compared with the conventional HPLC-CV-AFS hyphenated systems, the proposed HPLC-SCGD-AFS system is very simple in operation and eliminates auxiliary redox reagents. Parameters influencing mercury determination were optimized, such as concentration of formic acid, discharge current and argon flow rate. The method detection limits for HPLC-SCGD-AFS system were 0.67 μg L(-1) for Hg(2+), 0.55 μg L(-1) for MeHg and 1.19 μg L(-1) for EtHg, respectively. The developed method was validated by determination of certified reference material (GBW 10029, tuna fish) and was further applied for the determination of mercury in biological samples.  相似文献   

8.
An on-line inorganic and organomercury species separation, preconcentration and determination system consisting of cold vapor atomic absorption spectrometry (CV-AAS or CV-ETAAS) coupled to a flow injection (FI) method was studied. The inorganic mercury species was retained on a column (i.d., 3 mm; length 3 cm) packed to a height of 0.7 cm with a chelating resin aminopropyl-controlled pore glass (550 A) functionalized with [1,5-bis (2 pyridyl)-3-sulphophenyl methylene thiocarbonohydrazyde] placed in the injection valve of a simple flow manifold. Methylmercury is not directly determined. Previous oxidation of the organomercurial species permitted the determination of total mercury. The separation of mercury species was obtained by the selective retention of inorganic mercury on the chelating resin. The difference between total and inorganic mercury determined the organomercury content in the sample. The inorganic mercury was removed on-line from the microcolumn with 6% (m/v) thiourea. The mercury cold vapor generation was performed on-line with 0.2% (m/v) sodium tethrahydroborate and 0.05% (m/v) sodium hydroxide as reducing solution. The determination was performed using CV-AAS and CV-ETAAS, both approaches have been used and compared for the speciation of mercury in sea food. A detection limit of 10 and 6 ng l(-1) was achieved for CV-AAS and CV-ETAAS, respectively. The precision for 10 replicate determinations at the 1 microg l(-1) Hg level was 3.5% relative standard deviation (R.S.D.), calculated from the peak heights obtained. Both approaches were validated with the use of two certified reference materials and by spiking experiments. By analyzing the two biological certified materials, it was evident that the difference between the total mercury and inorganic mercury corresponds to methylmercury. The concentrations obtained by both techniques were in agreement with the certified values or with differences of the certified values for total Hg(2+) and CH(3)Hg(+), according to the t-test for a 95% confidence level. It is amazing how this very simple method is able to provide very important information on mercury speciation.  相似文献   

9.
The determination of trace levels of pesticides like atrazine in water samples of small, restricted volumes is one of the future demands of environmental analysis. In a brief review existing chromatographic and immunochemical methods for atrazine are critically discussed. Then a simple rapid enzyme-linked immunosorbent assay (ELISA) using the tip of an inoculation needle as a solid surface is presented. The sample volume could be reduced to 30 mul. The assay had a centre of the test IC(50) of 0.12 mug l(-1) and permitted the characterisation of atrazine at levels of 0.022-2.90 mug l(-1). A first outlook for automatisation is given. The new method was compared with an ELISA using 96 well microtiter plates as a solid phase. Surface water samples with low atrazine contents were analysed to check the new method.  相似文献   

10.
A sequential injection (SI) method for the determination of mercury via cold vapor atomic absorption spectrophotometry is presented. The method differs from flow injection (FI) cold vapor methods for the determination of mercury because of the simplicity of the system required for the method: one pump, one valve, a gas-liquid separator, and an atomic absorption spectrophotometer equipped with a quartz cell. Under optimal conditions, the method has the following figures of merit: a linear calibration range of 1.0 to 20 microg L(-1); a detection limit of 0.46 microg L(-1); and a precision of 0.90% RSD (8 microg L(-1)). The procedure allows for a sampling rate of one injection per 80 s (excluding sample pretreatment). Results from the determination of mercury in water and fish specimens are also presented. The figures of merit of the method are compared to two other SI methods for the determination of mercury.  相似文献   

11.
A method was proposed for the simultaneous determination of trace cadmium and mercury by vapor generation non-dispersive atomic fluorescence spectrometry using an intermittent flow system. The effects of the parameters on the performance were studied systematically. The parameters such as acid concentration of the reaction medium, flow rate of the carrier gas and shield gas, the observation height and the atomizer temperature, etc. which affected the sensitivity, were optimized. Ascorbic acid, cobalt ion and thiourea were used as enhancement reagents or masking agents to enhance the generation efficiency of the volatile species of Cd and Hg. The mechanisms of their effects on vapor generation were investigated. In the presence of thiourea and ascorbic acid, the influences of some coexisting elements on the determination of cadmium and mercury were investigated. The detection limits (3sigma) were 0.010 microg l(-1) for Cd and 0.019 microg l(-1) for Hg, respectively. The relative standard deviations for Cd and Hg at 1.00 microg l(-1) were 2.6% and 0.97% (n = 11), respectively. The proposed method has been satisfactorily applied to the determination of trace cadmium and mercury in Chinese herbal medicine.  相似文献   

12.
Carasek E 《Talanta》2000,51(1):173-178
A simple and fast method for the extraction into xylene of sub mug l(-1) concentrations of metals using ammonium diethyldithiophosphate (DDTP) as a complexing reagent and their subsequent determination by flame atomic absorption spectrometry is described. The method was tested in sea water spiked with Au at a concentration of 3.0 mug l(-1). The extraction was carried out until the aqueous to organic phase ratio achieved a 1000-fold preconcentration of metal. Optimisation of extraction parameters and the effect of Fe interference was investigated. Sea water samples spiked with Au produced an average recovery of 95% and the detection limit (3sigma) in deionized water was 2.9 ng l(-1). High enrichment factors could be obtained due to the small final volume (mul) of organic solvent.  相似文献   

13.
In the present work, erioglaucine A was applied as internal standard to enhanced spectrophotometric determination of chromium (VI) with diphenylcarbazide. The following procedure was used: (1) addition of internal standard and formation of ion pairs of Cr (VI) with benzyltributylammonium bromide (BTAB) (sample volume 100 ml), (2) extraction to 10 ml of methylene chloride, (3) evaporation in nitrogen stream, and (4) redissolution in a micro-volume with addition of diphenylcarbazide for color development (final volume 200 mul). The preconcentration factor achieved was about 400 and it was shown that, using internal standard, the analytical errors due to sample treatment were reduced. The analytical signals for chromium and internal standard were obtained at 591.30 and 653.50 nm from first derivative spectra, normalized against (1)D(653.50nm). The analytical characteristics evaluated were: detection limit = 0.06 mug l(-1), quantification limit = 0.19 mug l(-1), precision for 1 mug l(-1) 14.2%, and for 10 mug l(-1) 3.2%, correlation coefficient of linear regression was 0.9985. The proposed procedure was applied to determination of chromium (VI) in tap water. Total chromium was determined by electrothermal atomic absorption spectrometry, the recovery of hexavalent chromium added was then evaluated and compared with the results of the proposed procedure. In this experiment, good agreement was obtained between results obtained by the two methods.  相似文献   

14.
Tsalev DL  Sperling M  Welz B 《Talanta》2000,51(6):1059-1068
An automated on-line pre-reduction of arsenate, monomethylarsonate (MMA) and dimethylarsinate (DMA) using flow injection hydride generation atomic absorption spectrometry (FI-HGAAS) is feasible. The kinetics of pre-reduction and complexation depend strongly on the concentration of l-cysteine and on the temperature in the following increasing order: inorganic As(V)相似文献   

15.
Low recovery rate and inconsistent measurements were found in the determination of mercury by method of cold vapor atomic absorption spectrophotometry using the hydride formation system (Hitachi HFS-2, Hitachi Ltd., Tokyo). To overcome this problem of insufficient reaction time we developed a simple T-joint device attaching to the commercial HFS-2 system for the determination of mercury in various biological tissues and sediment samples. The T-joint device was designed to combine sample and reductant injection which increased the reaction time of the sample allowing a complete formation of mercury vapor and speeding up the analysis process in comparison to the traditional cold vapor atomic absorption spectrometric method. Recoveries of mercury were in the range 95% - 100%. The corrected procedure gave precise and accurate readings with several certified reference materials: NIES No. 2 from the Japan Environment Agency; IAEA-356 from the International Atomic Energy Association, and DOLT-2, DORM-2, TORT-2, PACS-1 and MESS-2 from the National Research Council of Canada. Simple acid digestion methods were developed based on the sample Hg level and the nature of the sample. The sample detection limits were 0.0125 μg g−1 fresh weight and 0.0625 μg g−1 dry weight for biological samples, and as low as 0.0125 μg g−1 dry weight for sediment samples. These analytical protocols we established met the general requirements in environmental research and monitoring of mercury pollution.  相似文献   

16.
In this paper, the on-line coupling of solid-phase extraction, based on a restricted-access support with high-performance reverse phase chromatography for the analysis of carbamazepine (CBZ) and carbamazepine-10,11-epoxide (CBZ-E) in human plasma samples is described. A precolumn packed with 25 mum C(18) alkyl-diol support is used for direct plasma injection. Using column-switching techniques, the analytes were enriched on the precolumn by a 5 mM phosphate buffer (pH 7) with 2% of methanol solution at a flow-rate of 0.8 ml min(-1), while proteins and endogenous hydrophilic substances in plasma were washed off to waste. The enriched analytes were then back-flushed onto the analytical C(18) column, separated by a mixture of 10 mM phosphate buffer (pH 7) acetonitrile (70:30 v/v) solution at a flow-rate of 1.0 ml min(-1) and detected by the ultraviolet absorbance set at 212 and 285 nm and without transfer loss. Linear calibration graphs were obtained for sample injection volumes of 50 (0.2-4.0 of mug of CBZ ml(-1) and 0.1-5.0 mug of CBZ-E ml(-1), respectively), and 20 mul (5.0-20.0 mug of CBZ ml(-1)); in either case the r-value was >0.9963. Recoveries from spiked plasma samples were quantitative for both analytes and the coefficients of variation were below 3.83%. The lowest samples concentrations that can be quantified with acceptable accuracy and precision was 0.2 mug CBZ ml(-1) and 0.1 mug CBZ-E ml(-1) when a sample volume of 50 mul was injected. Concentrations of 0.08 and 0.05 mug ml(-1) of CBZ and CBZ-E were considered the limit of detection for a signal-to-noise ratio of 3. Furthermore, the developed column-switching method was successfully applied to the determination of CBZ and CBZ-E in plasma samples of patients submitted to CBZ therapy.  相似文献   

17.
Luo Y  Nakano S  Holman DA  Ruzicka J  Christian GD 《Talanta》1997,44(9):1563-1571
The spectrophotometric determination of Cr(VI) and Cr(III) via sequential injection was used to demonstrate the sensitivity enhancement provided by a newly developed wetting film extraction system. The reaction product of Cr(VI) with 1,5-diphenylcarbazide was ion-paired with perchlorate and extracted into an organic wetting film consisting of octanol and 4-methyl-2-pentanone on the inner wall of a Teflon tube. The wetting film, with the extracted analyte, was then eluted with 100 mul acetonitrile and the analyte determined spectrophotometrically at 546 nm. Important optimized parameters were the selection of wetting film and elution solvents, the flow rate, the length and diameter of the extraction coil and the conditions for the formation of the ion paired chelate. Cr(III) was previously oxidized to Cr(VI) and calculated as the difference between total Cr and Cr(VI). An enrichment factor of 25 and a detection limit of 2.0 mug l(-1) Cr(VI) were achieved with a sampling frequency of 17 h(-1). The calibration curve was linear up to 100 mug l(-1) Cr(VI) (r = 0.999). The relative standard deviations were 2.8 and 2.0% at the 25 and 100 mug l(-1) levels.  相似文献   

18.
A simple and inexpensive laboratory-built vapor generator was used with inductively coupled plasma mass spectrometry (ICP-MS) for the determination of mercury in urine and seawater samples. The applications of vapor generation ICP-MS alleviated the non-spectroscopic interferences and the sensitivity problem of mercury determination encountered when the conventional pneumatic nebulizer was used for sample introduction. The concentration of mercury was determined by isotope dilution method. The isotope ratio of mercury was calculated from the peak areas of each injection peak. The repeatability of the peak areas and isotope ratio determinations of seven consecutive injections of 1 ng mL?1 Hg solution were 2.3% and 2.2%, respectively. This method has a detection limit of 0.07 ng mL?1 for mercury. This method was applied to determine mercury in a CASS-3 nearshore seawater reference sample, NASS-4 open ocean seawater reference sample, NIST SRM 2670 freeze-dried urine reference sample and several urine and seawater samples collected from National Sun Yat-Sen University. The results for the reference samples agreed satisfactorily with the reference values. Results for other samples analyzed by the isotope dilution method and the method of standard additions agreed satisfactorily. Precision was better than 10% for most of the determinations.  相似文献   

19.
A new vapor generation system for mercury (Hg) species based on the irradiation of mercaptoethanol (ME) with UV was developed to provide an effective sample introduction unit for atomic fluorescence spectrometry (AFS). Preliminary investigations of the mechanism of this novel vapor generation system were based on GC–MS and FT–IR studies. Under optimum conditions, the limits of determination for inorganic divalence mercury and methyl mercury were 60 and 50 pg mL−1, respectively. Certified reference materials (BCR 463 tuna fish and BCR 580 estuarine sediment) were used to validate this new method, and the results agreed well with certified values. This new system provides an attractive alternative method of chemical vapor generation (CVG) of mercury species compared to other developed CVG systems (for example, the traditional KBH4/NaOH–acid system). To our knowledge, this is the first systematic report on UV/ME-based Hg species vapor generation and the determination of total and methyl Hg in environmental and biological samples using UV/ME–AFS. Figure A new vapor generation system for mercury species using mercaptoethanol under UV irradiation was developed as an effective sample introduction unit for atomic fluorescence spectrometry  相似文献   

20.
A simple, sensitive and low cost, flow injection time-based method was developed for on-line preconcentration and determination of copper, lead and chromium(VI) at sub mug l(-1) levels in natural waters and biological samples. At the optimum pH, the on-line formed metal-ammonium pyrrolidine dithiocarbamate (APDC) complexes were sorbed on the unloaded commercial polyurethane foam (PUF), and subsequent eluted quantitatively by isobutylmethylketone and determined by flame atomic absorption spectrometry (FAAS). All chemical, and flow injection variables were optimized for the quantitative preconcentration of each metal and a study of interference level of various ions was also carried out. The system offered improved flexibility, low backpressure and applicability to all the studied metals. At a sample frequency of 36 h(-1) and a 60 s preconcentration time, the enhancement factor was 170, 131 and 28, the detection limit was 0.2, 1.8 and 2.0 mug l(-1), and the precision, expressed as relative standard deviation (s(r)), was 2.8 (at 10 mug l(-1)), 3.4 (at 50 mug l(-1)) and 3.6% (at 50 mug l(-1)) for Cu(II), Pb(II) and Cr(VI), respectively. The accuracy of the developed method was sufficient and evaluated by the analysis of certified reference materials and spiked water samples. Finally, the method was applied to the analysis of environmental samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号