首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Río-Segade S  Bendicho C 《Talanta》1999,48(2):477-484
A reversed-phase high-performance liquid chromatography (HPLC) method with cold vapor atomic absorption spectrometry (CV-AAS) detection is developed for mercury speciation. In this paper, the efficiency of tetrabutylammonium bromide reagent and sodium chloride in a methanol-water mixture as mobile phase is evaluated for HPLC separation of methylmercury and inorganic mercury coupled with on-line CV-AAS determination. Both mercury species are separated on a reversed-phase C(18) column. Several parameters (e.g. composition and flow-rate of mobile phase) are investigated for the optimization of HPLC separations. CV-AAS technique parameters are also studied for their effect on sensitivity (sodium borohydride and sodium hydroxide concentrations in the reducing agent, reducing agent flow-rate, length of the reduction coil and nitrogen flow-rate). Quantitative recoveries for both inorganic mercury and methylmercury are obtained from a spiked natural water sample.  相似文献   

2.
An on-line time based injection system used in conjunction with cold vapor generation atomic absorption spectrometry and microwave-aided oxidation with potassium persulfate has been developed for the determination of the different mercury species in fish-eggs oil samples. A three-phase surfactant-oil-water emulsion produced an advantageous flow when a peristaltic pump was used to introduce the highly viscous sample into the system. The optimum proportion of the oil-water mixture ratio was 2:3 v/v with a Tween 20 surfactant concentration in the emulsion of 0.008% v/v. Inorganic mercury was determined after reduction with sodium borohydride while total mercury was determined after an oxidation step with persulfate prior to the reduction step to elemental mercury with the same reducing agent. The difference between total and inorganic mercury determined the organomercury content in samples. A linear calibration graph was obtained in the range 0.1-20 micrograms l-1 of Hg2+ by injecting 0.7 ml of samples. The detection limits based on 3 sigma of the blank signals were 0.11 and 0.12 microgram l-1 for total and inorganic mercury, respectively. The relative standard deviation of ten independent measurements were 2.8 and 2.2% for 10 micrograms l-1 and 8.8 and 9.0% for 0.1 microgram l-1 amounts of total and inorganic mercury, respectively. The recoveries of 0.3, 0.6 and 8 micrograms l-1 of inorganic and organic mercury added to fish-eggs oil samples ranged from 93.0 to 94.8% and from 100 to 106%, respectively. Good agreement with those values obtained for total mercury content in real samples by electrothermal atomic absorption spectrometry was also obtained, differences between mean values were < 7%. With the proposed procedure, 22 proteropterous catfish-eggs oil samples from the northwestern coast of Venezuela were measured; while the organic mercury lay in the range 2.0 and 3.3 micrograms l-1, inorganic mercury was not detected.  相似文献   

3.
A liquid chromatography-inductively coupled plasma mass spectrometric (LC-ICP-MS) method for lead and mercury speciation analysis was described. Sample containing ionic lead and mercury compounds was subjected to liquid chromatographic separation before injection into the direct injection high efficiency nebulizer (DIHEN, 170-AA). The species studied include inorganic lead (Pb(II)), trimethyl lead (trimethyl-Pb), triethyl lead (triethyl-Pb), inorganic mercury (Hg(II)), methyl mercury (methyl-Hg) and ethyl mercury (ethyl-Hg), which were well separated by reversed-phase liquid chromatography with a C18 column as the stationary phase and a pH 2.8 solution of 0.2% (v/v) 2-mercaptoethanol, 1 mg L(-1) ETDA, 174.2 mg L(-1) sodium 1-pentanesulfonate and 12% (v/v) methanol as the mobile phase. The lead and mercury species in biological tissues were quantitatively extracted, into 10 g L(-1) EDTA and 0.2% (v/v) 2-mercaptoethanol solution taken in a closed centrifuge tube and kept on water bath, using microwaves at 65 degrees C for 2 min. The spike recovery of individual lead and mercury species determined by spiking the samples with suitable concentration of lead and mercury mixture standard were between 93% and 99%. The detection limits of the species studied were in the range 0.1-0.3 microg Pb L(-1) and 0.2-0.3 microg Hg L(-1). The procedure has been applied for the speciation analysis of two reference samples namely NRCC DOLT-3 Dogfish Liver and DORM-2 Dogfish Muscle and a swordfish sample obtained locally. The sum of the concentrations of individual species has been compared with the certified values for total lead and mercury to verify the accuracy of the method. The precision between sample replicates was better than 10% with LC-DIHEN-ICP-MS method.  相似文献   

4.
Two procedures have been investigated for the quantification of the different forms of mercury in food. A two-stage procedure has been developed to determine firstly total inorganic and organometallic species, and then the full separation of all organomercury species. The procedure involves solubilisation of the samples using alkaline extractions or enzymolysis, followed by the extraction of organic mercury in an organic solvent, preferably a mixture of dichloromethane and hexane (3:2). For the total organic mercury determination, the organic extract is analysed for "total" mercury after nitric acid/peroxide digestion, evaporation of the solvent and detection by cold vapour-atomic fluorescence spectrometry. Full organomercury speciation requires a clean-up step before analysis of the final extract in dichloromethane by gas chromatography coupled to a pyrolyser and an atomic fluorescence detector (GC-pyro-AFS). A detection limit of 6 ng l-1, and reproducibility of 2% was achieved for the CV-AFS method; GC-pyro-AFS yielded 200 ng l-1 and 5% for detection limit and coefficient of variation, respectively. Both procedures were validated with the use of various certified reference materials over a wide range of mercury concentrations, and by spiking experiments. The validated methods were tested successfully on a wide range of commercially available food samples.  相似文献   

5.
建立了微波萃取高效液相色谱-冷原子荧光光谱法(MAE-HPLC-CVAFS)测定沉积物中甲基汞(MeHg+)和无机汞(Hg2+)的方法。以0.1%(V/V)2-巯基乙醇为萃取剂,用于沉积物样品中汞形态的萃取,在80℃下萃取8 min,萃取液直接注入HPLC-CVAFS系统分析。在优化条件下,MeHg+和Hg2+的检出限分别为0.58和0.48 ng/g;加标回收率分别为96.2%和95.8%;RSD(n=6)分别为5.7%和4.1%。对标准参考物质(IAEA-405和ERM-CC580)的分析结果与推荐值一致。本方法简单、快速、准确、检出限低,抗干扰能力强,具有很好的实用性和推广价值。  相似文献   

6.
Hollow-cathode (HC) radiofrequency glow-discharge (rf-GD) optical-emission spectrometry (OES) has been used as detector for the determination of inorganic mercury by cold-vapour (CV) generation in a flow-injection (FI) system. Both NaBH4 and SnCl2 were evaluated as reducing reagents for production of mercury CV. The conditions governing the discharge (pressure, He flow rate, and delivered power) and Hg CV generation (NaBH4 or SnCl2 concentration and reagent flow rate) were optimized using both reducing agents. The analytical performance characteristics of FI-CV-rf-GD-OES for mercury detection were evaluated at the 253.6 nm emission mercury line. Detection limits (DL) of 0.2 ng mL(-1) using SnCl2 and 1.8 ng mL(-1) using NaBH4 were obtained (100 microliter sample injections were used). When the optimized experimental conditions using SnCl2 had been determined, the analytical potential of this CV-rf-GD-OES method was investigated as on-line detector for high-performance liquid chromatographic (HPLC) speciation of mercury (Hg(II) and methylmercury). The HPLC-CV-rf-GD-OES detection limits for 100 microliter sample injections were found to be 1.2 and 1.8 ng mL(-1) (as mercury) of inorganic mercury and methylmercury, respectively. The reproducibility observed was below +/- 8% for both species. Finally, the HPLC-CV-rf-GD-OES system developed was successfully applied to the determination of methylmercury (speciation) in two certified reference materials, Dorm-2 and Dolt-2.  相似文献   

7.
A simple, fast, and sensitive method for speciation and determination of As (III, V) and Hg (II, R) in human blood samples based on ionic liquid-dispersive liquid-liquid microextraction (IL-DLLME) and flow injection hydride generation/cold vapor atomic absorption spectrometry (FI-HG/CV-AAS) has been developed. Tetraethylthiuram disulfide, mixed ionic liquids (hydrophobic and hydrophilic ILs) and acetone were used in the DLLME step as the chelating agent, extraction and dispersive solvents, respectively. Using a microwave assisted-UV system, organic mercury (R-Hg) was converted to Hg(II) and total mercury amount was measured in blood samples by the presented method. Total arsenic content was determined by reducing As(V) to As(III) with potassium iodide and ascorbic acid in a hydrochloric acid solution. Finally, As(V) and R-Hg were determined by mathematically subtracting the As(III) and Hg(II) content from the total arsenic and mercury, respectively. Under optimum conditions, linear range and detection limit (3σ) of 0.1–5.0 µg L?1 and 0.02 µg L?1 for As(III) and 0.15–8.50 µg L?1 and 0.03 µg L?1 for Hg(II) were achieved, respectively, at low RSD values of < 4% (N = 10). The developed method was successfully applied to determine the ultra-trace amounts of arsenic and mercury species in blood samples; the validation of the method was performed using standard reference materials.  相似文献   

8.
A new vapor generation system for mercury (Hg) species based on the irradiation of mercaptoethanol (ME) with UV was developed to provide an effective sample introduction unit for atomic fluorescence spectrometry (AFS). Preliminary investigations of the mechanism of this novel vapor generation system were based on GC–MS and FT–IR studies. Under optimum conditions, the limits of determination for inorganic divalence mercury and methyl mercury were 60 and 50 pg mL−1, respectively. Certified reference materials (BCR 463 tuna fish and BCR 580 estuarine sediment) were used to validate this new method, and the results agreed well with certified values. This new system provides an attractive alternative method of chemical vapor generation (CVG) of mercury species compared to other developed CVG systems (for example, the traditional KBH4/NaOH–acid system). To our knowledge, this is the first systematic report on UV/ME-based Hg species vapor generation and the determination of total and methyl Hg in environmental and biological samples using UV/ME–AFS. Figure A new vapor generation system for mercury species using mercaptoethanol under UV irradiation was developed as an effective sample introduction unit for atomic fluorescence spectrometry  相似文献   

9.
He Q  Zhu Z  Hu S  Jin L 《Journal of chromatography. A》2011,1218(28):4462-4467
A novel solution cathode glow discharge (SCGD) induced vapor generation was developed as interface to on-line couple high-performance liquid chromatography (HPLC) with atomic fluorescence spectrometry (AFS) for the speciation of inorganic mercury (Hg(2+)), methyl-mercury (MeHg) and ethyl-mercury (EtHg). The decomposition of organic mercury species and the reduction of Hg(2+) could be completed in one step with this proposed SCGD induced vapor generation system. The vapor generation is extremely rapid and therefore is easy to couple with flow injection (FI) and HPLC. Compared with the conventional HPLC-CV-AFS hyphenated systems, the proposed HPLC-SCGD-AFS system is very simple in operation and eliminates auxiliary redox reagents. Parameters influencing mercury determination were optimized, such as concentration of formic acid, discharge current and argon flow rate. The method detection limits for HPLC-SCGD-AFS system were 0.67 μg L(-1) for Hg(2+), 0.55 μg L(-1) for MeHg and 1.19 μg L(-1) for EtHg, respectively. The developed method was validated by determination of certified reference material (GBW 10029, tuna fish) and was further applied for the determination of mercury in biological samples.  相似文献   

10.
Li Y  Jiang Y  Yan XP 《Electrophoresis》2005,26(3):661-667
Capillary electrophoresis (CE) was directly interfaced to flame-heated furnace atomic absorption spectrometry (FHF-AAS) via a laboratory-made thermospray interface for nanoliter trace element speciation. The CE-FHF-AAS interface integrated the superiorities of stable CE separation, complete sample introduction, and continuous vaporization for AAS detection without the need of extra external heat sources and any post-column derivation steps. To demonstrate the usefulness of the developed hybrid technique for speciation analysis, three environmentally significant and toxic forms of methylmercury (MeHg), phenylmercury (PhHg), and inorganic mercury (Hg(II)) were taken as model analytes. Baseline separation of the three mercury species was achieved by CE in a 60 cm long x 75 microm inner diameter fused-silica capillary at 20 kV and using a mixture of 100 mM boric acid and 10% v/v methanol (pH 8.30) as running electrolyte. The precision (relative standard deviation, RSD, n = 7) of migration time, peak area and peak height for the mercury species at 500 microg x L(-1) (as Hg) level were in the range of 0.9-1.2%, 1.5-1.9%, and 1.4-2.0%, respectively. The detection limit (S/N = 3) of three mercury species was 3.0 +/- 0.15 pg (as Hg), corresponding to 50.8 +/- 2.4 microg x L(-1) (as Hg) for 60 nL sample injection, which was almost independent on specific mercury species. The developed hybrid technique was successfully applied to the speciation analysis of mercury in a certified reference material (DORM-2, dogfish muscle).  相似文献   

11.
In this paper, a novel automatic approach for the speciation of inorganic mercury (Hg(2+)), methylmercury (MeHg(+)) and ethylmercury (EtHg(+)) using multisyringe chromatography (MSC) coupled to cold-vapor atomic fluorescence spectrometry (CV/AFS) was developed. For the first time, the separation of mercury species was accomplished on a RP C18 monolithic column using a multi-isocratic elution program. The elution protocol involved the use of 0.005% 2-mercapthoethanol in 240 mM ammonium acetate (pH 6)-acetonitrile (99:1, v/v), followed by 0.005% 2-mercapthoethanol in 240 mM ammonium acetate (pH 6)-acetonitrile (90:10, v/v). The eluted mercury species were then oxidized under post-column UV radiation and reduced using tin(II) chloride in an acidic medium. Subsequently, the generated mercury metal were separated from the reaction mixture and further atomized in the flame atomizer and detected by AFS. Under the optimized experimental conditions, the limits of detection (3σ) were found to be 0.03, 0.11 and 0.09 μg L(-1) for MeHg(+), Hg(2+) and EtHg(+), respectively. The relative standard deviation (RSD, n=6) of the peak height for 3, 6 and 3 μg L(-1) of MeHg(+), Hg(2+) and EtHg(+) (as Hg) ranged from 2.4 to 4.0%. Compared with the conventional HPLC-CV/AFS hyphenated systems, the proposed MSC-CV/AFS system permitted a higher sampling frequency and low instrumental and operational costs. The developed method was validated by the determination of a certified reference material DORM-2 (dogfish muscle), and was further applied for the determination of mercury species environmental and biological samples.  相似文献   

12.
Mercury speciation by CE: a review   总被引:2,自引:0,他引:2  
CE methods for the speciation of inorganic and organomercury compounds are reviewed. Sample preparation, separation conditions and detection modes are discussed. Efficient separation and sensitive determination of mercury species by CE typically involves complexation with various thiols, chromogenic and other chelating agents; however, some methods do not require complexation. Spectrophotometric detection based on UV-visible absorption is by far the most commonly used. Hyphenated techniques, such as CE/inductively coupled plasma (ICP)-MS, hydride generation coupled to ICP-MS or atomic fluorescence spectrometry and CE/atomic absorption spectrometry are gaining popularity due to their high sensitivity and selectivity. Last, but not least, the potential and applications of electrochemical methods for detection of separated mercury species are outlined.  相似文献   

13.
Current approaches to mercury speciation and total trace element analysis require separate extraction/digestions of the sample. Ecologically important aquatic organisms--notably primary consumers such as zooplankton, polychaetes and amphipods--usually yield very low biomass for analysis, even with significant compositing of multiple organisms. Individual organisms in the lower aquatic food chains (mussels, snails, oysters, silversides, killifish) can also have very low sample mass, and analysis of whole single organisms is important to metal uptake studies. A method for the determination of both methyl Hg and total heavy metal concentrations (Zn, As, Se, Cd, Hg, Pb) in a single, low-mass sample of aquatic organisms was developed. Samples (2 to 50 mg) were spiked with enriched with (201)MeHg and (199)Hg, then leached in 4 M HNO(3) at 55 degrees C for extraction of MeHg. After 16 h, an aliquot (0.05 mL) was removed to determine mercury species (methyl and inorganic Hg) by isotope dilution gas chromatography inductively coupled plasma mass spectrometry (ICP-MS). The leachate was then acidified to 9 M HNO(3) and digested in a microwave at 150 degrees C for 10 min, and total metal concentrations were determined by collision cell ICP-MS. The method was validated by analyzing five biological certified reference materials. Average percent recoveries for Zn, As, Se, Cd, MeHg, Hg(total) and Pb were 99.9%, 103.5%, 100.4%, 103.3%, 101%, 97.7%, and 97.1%, respectively. The correlation between the sum of MeHg and inorganic Hg from the speciation analysis and total Hg by conventional digestion of the sample was determined for a large sample set of aquatic invertebrates (n = 285). Excellent agreement between the two measured values was achieved. This method is advantageous in situations where sample size is limited, and where correlations between Hg species and other metals are required in the same sample. The method also provides further validation of speciation data, by corroborating the sum of the Hg species concentrations with the total Hg concentration.  相似文献   

14.
A method for organic, inorganic and total mercury determination in fish tissue has been developed using chemical vapor generation and collection of mercury vapor on a gold gauze inside a graphite tube and further atomization by electrothermal atomic absorption spectrometry. After drying and cryogenic grinding, potassium bromide and hydrochloric acid solution (1 mol L− 1 KBr in 6 mol L− 1 HCl) was added to the samples. After centrifugation, total mercury was determined in the supernatant. Organomercury compounds were selectively extracted from KBr solution using chloroform and the resultant solution was back extracted with 1% m/v L-cysteine. This solution was used for organic Hg determination. Inorganic Hg remaining in KBr solution was directly determined by chemical vapor generation electrothermal atomic absorption spectrometry. Mercury vapor generation from extracts was performed using 1 mol L− 1 HCl and 2.5% m/v NaBH4 solutions and a batch chemical vapor generation system. Mercury vapor was collected on the gold gauze heated resistively at 80 °C and the atomization temperature was set at 650 °C. The selectivity of extraction was evaluated using liquid chromatography coupled to chemical vapor generation and determination by inductively coupled plasma mass spectrometry. The proposed method was applied for mercury analysis in shark, croaker and tuna fish tissues. Certified reference materials were used to check accuracy and the agreement was better than 95%. The characteristic mass was 60 pg and method limits of detection were 5, 1 and 1 ng g− 1 for organic, inorganic and total mercury, respectively. With the proposed method it was possible to analyze up to 2, 2 and 6 samples per hour for organic, inorganic and total Hg determination, respectively.  相似文献   

15.
反相液相色谱法测定化工废水中的无机汞和有机汞   总被引:6,自引:0,他引:6  
用反相离子对色谱对无机汞和3种有机汞化合物进行了形态分析。以65%甲醇作流动相,加入四丁基溴化铵(TBA)做离子对试剂,用紫外检测器在230nm进行检测。对影响汞化合物吸收强度和保留时间的因素如甲醇和四丁基溴化铵的浓度进行了优化。在不同的线性范围内对无机汞和3种有机汞化合物作了工作曲线,4种化合物均成良好的线性关系。  相似文献   

16.
《Analytical letters》2012,45(14):2657-2669
Abstract

A simple and rapid method based on closed vessel microwave‐assisted extraction was developed to determine total, inorganic mercury and organomercury in biological tissues. Total mercury was extracted using HNO3:H2O2 (4:1) mixture. In a separate subsample, extraction of mercury species was carried out with tetramethylammonium hydroxide (TMAH). The total and inorganic mercury analyses were carried out by flow‐injection cold‐vapor atomic fluorescence spectrometry (FI‐CV‐AFS). The organomercury concentration was calculated by difference. Considering a sample amount of 0.2 g, the detection limits were 4 and 26 ng/g for total and inorganic mercury, respectively. The accuracy of the procedures was checked by analyzing certified reference materials and recovery studies of spiked fish tissues.  相似文献   

17.
A method for determination of inorganic and total mercury by flow injection-cold vapor atomic absorption spectrometry (FI-CVAAS) with on-line oxidation was developed. Potassium peroxodisulphate and sulphuric acid were used as oxidizing agents so that decomposition of organomercury compounds could be achieved. Depending on the temperature selected, inorganic or total mercury could be determined with the same FI manifold. In order to assess the method performance, synthetic wastewater, wastewater, urine and saline water samples were spiked with inorganic mercury, methylmercury and phenylmercury. Quantitative recoveries were obtained for the three mercury species, except with the synthetic wastewater when the chemical oxygen demand value was higher than 1000 mg l−1. In most cases, the standard addition method was usually needed for calibration. LODs calculated as 3 σ/m were 0.47 μg l−1 for inorganic mercury and 0.45 μg l−1 for total mercury. R.S.D. values corresponding to peak height measurements were 1.5 and 2.2% for inorganic mercury and total mercury, respectively. The accuracy of the method was tested by analyzing 5 mol l−1 hydrochloric acid extracts of seven biological and environmental CRMs. LODs in the solid CRMs ranged from 0.032 to 0.074 μg g−1.  相似文献   

18.
An automatic system, based on the on-line coupling of high-performance liquid chromatography (HPLC) separation, post column microwave digestion, and cold-vapor atomic fluorescence spectrometry (CVAFS) detection, was proposed for the speciation analysis of four mercury compounds. Post column microwave digestion, in the presence of potassium persulfate (in HCl), was applied in the system to improve the conversion efficiency of three organic mercury compounds into inorganic mercury. Parameters influencing the on-line digestion efficiency and the separation effect were optimized. To avoid water vapor and methanol entering into the atomic fluorescence detector, ice-water mixture bath was used to cool the microwave-digested sample solution. Four mercury species including inorganic mercury chloride (MC), methylmercury chloride (MMC), ethylmercury chloride (EMC) and phenylmercury chloride (PMC) were baseline separated within 13 min by using RP C18 column with a mobile phase of 50% (v/v) methanol containing 10 mmol l−1 tetrabutyl ammonium bromide and 0.1 mol l−1 sodium chloride pumped at 1.2 ml min−1. Seafood samples, composed of three gastropod species and two bivalve species from Yantai port, China, have been analyzed by the proposed method. Dogfish muscle (DORM-2) was analyzed to verify the accuracy of the method and the result was in good agreement with the certified value.  相似文献   

19.
A novel on-line coupled capillary electrophoresis (CE) cold vapor generation (CVG) with electrothermal quartz tube furnace atomic absorption spectrometry (EQTF-AAS) system for mercury speciation has been developed. The mercury species (inorganic mercury and methylmercury) were completely separated by CE in a 80 cm length × 100 μm i.d. fused-silica capillary at 20 kV and using a buffer of 100 mM boric acid and 10% (v/v) methanol (pH 8.30). The effects of the inner diameter of quartz tube, the acidity of HCl, the NaBH4 concentration and N2 flow rate on Hg signal intensity were investigated. Speciation of mercury was highlighted using CE-CVG-EQTF-AAS. The detection limits of methylmercury and mercury were 0.035 and 0.027 μg mL−1, respectively. The precisions (RSDs) of peak height for six replicate injections of a mixture of 10 μg mL−1 (as Hg) were better than 4%. The interface was used for speciation analysis of mercury in dry goldfish muscle.  相似文献   

20.
A novel non-chromatographic approach for direct speciation of mercury, based on the selective retention inorganic mercury and methylmercury on the inner wall of a knotted reactor by using ammonium diethyl dithiophosphate and dithizone as complexing agents respectively, was developed for flow injection on-line sorption preconcentration coupled with chemical vapor generation non-dispersive atomic fluorescence spectrometry. With the sample pH kept at 2.0, the preconcentration of inorganic mercury on the inner walls of the knotted reactor was carried out based on the exclusive retention of Hg–DDP complex in the presence of methylmercury via on-line merging the sample solution with ammonium diethyl dithiophosphate solution, and selective preconcentration methylmercury was achieved with dithizone instead of ammonium diethyl dithiophosphate. A 15% (v/v) HCl was introduced to elute the retained mercury species and merge with KBH4 solution for atomic fluorescence spectrometry detection. Under the optimal experimental conditions, the sample throughputs of inorganic mercury and methylmercury were 30 and 20 h 1 with the enhancement factors of 13 and 24. The detection limits were found to be 3.6 ng l 1 for Hg2+ and 2.0 ng l 1 for CH3Hg+. The precisions (RSD) for the 11 replicate measurements of each 0.2 μg l 1 of Hg2+ and CH3Hg+ were 2.2% and 2.8%, respectively. The developed method was validated by the analysis of certified reference materials (simulated natural water, rice flour and pork) and by recovery measurements on spiked samples, and was applied to the determination of inorganic mercury and methylmercury in biological and environmental water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号