首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluid flow and heat transfer characteristics around a semi-circular tube in cross flow were experimentally and numerically investigated. Three different tube-flow arrangements were considered. Firstly, the flat surface of the tube was placed parallel to the freestream flow; secondly, the flat surface of the tube was facing the upstream flow and thirdly, the curved surface of the tube was facing the upstream flow. For the second and the third arrangements, different angles of attack were studied. Flow visualization was carried out to illustrate streamlines around the tube and to verify flow patterns obtained from the numerical calculations. It was found that: (1) for any angle of attack, the arrangement of the curved surface facing the flow gave higher average Nusselt number than the arrangement of the flat surface facing the flow and (2) for all tube-flow arrangements, increasing the angle of attack slightly increases the average Nusselt number. Correlations of Nusselt numbers in terms of Reynolds number and angle of attack were deduced from the experimental results for the three arrangements. The comparisons between the experimental data, correlations’ predictions and numerical results showed reasonable agreements.  相似文献   

2.
This paper presents parametric studies on the heat transfer and fluid exchange through single-hole baffles located at the median height in bottom heated top cooled enclosures. Results indicate that when the baffle area-opening ratio is smaller than 2%, the heat transfer in the enclosure is dominated by the transport through the baffle opening. Even with such small baffle openings, increasing the enclosure aspect ratio still enhances the transport across the baffle. The characteristic length scale of flow in the enclosure is a combination of baffle opening diameter and the chamber height. The Nusselt number that characterize the heat transfer through the baffle-hole is linearly correlated with the Rayleigh number based on baffle opening diameter and the temperature difference between the bulk temperatures in the two chambers, while no effects of Prandtl numbers are observed. The mechanism of transport across the baffle opening varies from conduction dominated, combined conduction and convection, and convection dominated regimes as Rayleigh number increases.  相似文献   

3.
This paper discusses the results of a study related to natural convection cooling of a heat source located on the bottom wall of an inclined isosceles triangular enclosure filled with a Cu water-nanofluid. The right and left walls of the enclosure are both maintained cold at constant equal temperatures, while the remaining parts of the bottom wall are insulated. The study has been carried out for a Rayleigh number in the range 104 ≤ Ra ≤ 106, for a heat source length in the range 0.2 ≤ ε ≤0.8, for a solid volume fraction in the range 0 ≤ ?≤0.06 and for an inclination angle in the range 0° ≤ δ≤45°. Results are presented in the form of streamline contours, isotherms, maximum temperature at the heat source surface and average Nusselt number. It is noticed that the addition of Cu nanoparticles enhances the heat transfer rate and therefore cooling effectiveness for all values of Rayleigh number, especially at low values of Ra. The effect of the inclination angle becomes more noticeable as one increases the value of Ra. For high Rayleigh numbers, a critical value for the inclination angle of δ = 15° is found for which the heat source maximum temperature is highest.  相似文献   

4.
Two-dimensional numerical studies of flow and temperature fields for turbulent natural convection and surface radiation in inclined differentially heated enclosures are performed. Investigations are carried out over a wide range of Rayleigh numbers from 108 to 1012, with the angle of inclination varying between 0° and 90°. Turbulence is modeled with a novel variant of the k–ε closure model. The predicted results are validated against experimental and numerical results reported in literature. The effect of the inclination of the enclosure on pure turbulent natural convection and the latter’s interaction with surface radiation are brought out. Profiles of turbulent kinetic energy and effective viscosity are studied to observe the net effect on the intensity of turbulence caused by the interaction of natural convection and surface radiation. The variations of local Nusselt number and average Nusselt number are presented for various inclination angles. Marked change in the convective Nusselt number is found with the orientation of enclosure. Also analyzed is the influence of change in emissivity on the flow and heat transfer. A correlation relevant to practical applications in the form of average Nusselt number, as a function of Rayleigh number, Ra, radiation convection parameter, N RC and inclination angle of the enclosure, φ is proposed.  相似文献   

5.
The problem of steady, laminar, natural convective flow of a viscous fluid in an inclined enclosure with partitions is considered. Transverse gradient of temperature is applied on the two opposing regular walls of the inclined enclosure while the other walls are maintained adiabatic. The problem is formulated in terms of the vorticity-stream function procedure. A numerical solution based on the finite volume method is obtained. Representative results illustrating the effects of the enclosure inclination angle and the degree of irregularity on the contour maps of the streamlines and temperature are reported and discussed. In addition, results for the average Nusselt number at the heated wall of the enclosure and the difference of extreme stream-function values are presented and discussed for various Rayleigh numbers, inclination angles and dimensionless partition heights.  相似文献   

6.
Artificially roughness is one of the well known methods of enhancing heat transfer from the heat transfer surface in the form of repeated ribs, grooves or combination of ribs and groove (compound turbulators). The artificial roughness produced on the heat transferring surface is used in cooling of gas turbine blades, nuclear reactor, solar air heating systems etc. Solar air heaters have wide applications in low to moderate temperature range, namely, drying of foods, agricultural crops, seasoning of wood and space heating etc. Solar air heaters have low value of convective heat transfer coefficient between the working fluid (air) and the heat transferring surface, due to the formation of thin laminar viscous sub-layer on its surface. The heat transfer from the surface can be increased by breaking this laminar viscous sub layer. Hence, in the present work compound turbulators in the form of integral wedge shaped ribs with grooves are used on the heat transfer surface, to study its effect on the heat transfer coefficient (Nusselt number) and friction factor in the range of Reynolds number 3,000–18,000. The roughness produced on the absorber plate forms the wetted side of upper broad wall of the rectangular duct of solar air heater. The relative groove position (g/p) was varied from 0.4 to 0.8 and the wedge angle (Φ) was varied from 10° to 25°, relative roughness pitch (p/e) and relative roughness height (e/D) was maintained as 8.0 and 0.033 respectively. The aspect ratio of the rectangular duct was maintained as 8. The Nusselt number and friction factor of the artificially roughened ducts were determined experimentally and the corresponding values were compared with that of smooth surface duct. It is observed that wedge-groove roughened surface shows more enhancement in heat transfer compared to only rib roughened surface arrangement. The investigation revealed that Nusselt number increases 1.5–3 times, while the friction factor increases two to three folds that of the smooth surface duct in the range of operating parameters. It is also observed that in rib–groove roughness arrangement with relative groove position of 0.65 shows the maximum enhancement in the heat transfer compared to the other rib-groove roughness arrangements. Statistical correlations for the Nusselt number and friction factor have been developed by the regression method in terms of the operating and roughness parameters. A program was also developed in MATLAB for the calculation of thermal efficiency and thermal effectiveness. It was observed that the thermal efficiency is more for wedge angle of 15° and relative groove position of 0.65 and its value ranges from 42 to 73 %. The uncertainties in the measurements due to various instruments for the Reynolds number, Nusselt number, and friction factor have been estimated as ±3.8, ±4.54 and ±7.6 % respectively in the range of investigation made.  相似文献   

7.
Experimental studies were carried out to investigate the fluid flow and heat transfer around a heated circular cylinder which was placed at various distances of a wall boundary with different geometries (flat or curved plate) with subcritical Reynolds number ranging from 3.5×103 to 104. The effects of plate geometry (aspect ratio: W|H=1.0,1.5 and 2.0, and rim angle, φ=0°,60°,90°, and 120°) and gap ratio, (G|D=0.0,0.86,2.0,7.0,10.0) on the fluid flow and heat transfer characteristics (static pressure around cylinder surface, wake width, base pressure, pressure drag coefficients, velocity distribution, and both local and mean Nusselt numbers) were presented. Also flow visualization was carried out to illustrate the flow patterns around the cylinder at various gap ratios (G|D). It was found that the heat transfer and fluid flow characteristics are dependent on the plate geometry at all tested gap ratios, except for G|D=7.0 and 10.0, they are independent of the plate geometry.  相似文献   

8.
Laminar flow past a circular cylinder with multiple small-diameter control rods is numerically investigated in this study. The effects of rod-to-cylinder spacing ratio, rod and cylinder diameter ratio, cylinder Reynolds number, number of control rods and angle of attack on the hydrodynamics of the main circular cylinder are investigated. Four different flow regimes are identified based on the mechanism of lift and drag reduction. The range of rod-to-cylinder spacing ratio where significant force suppression can be achieved is found to become narrower as the Reynolds number increases in the laminar regime, but is insensitive to the diameter ratio. The numerical results for the case with six identical small control rods at Re=200 show that the lift fluctuation on the main cylinder can be suppressed significantly for a large range of spacing ratio and various diameter ratios, while the drag reduction on the main cylinder is also achieved simultaneously. The six-control-rod arrangement has shown better performance in flow control than the arrangements with less control rods, especially in terms of force reduction at various angles of attack.  相似文献   

9.
Experimental investigations in fluid flow and heat transfer have been carried out to study the effect of wall proximity due to flow separation around a square prism at Reynolds number 2.6 × 104, blockage ratio 0.1, different height-ratios and various angles of attack. The static pressure distribution has been measured on all faces of the square prism. The results have been presented in the form of pressure coefficient, drag coefficient for various height-ratios. The pressure distribution shows positive values on the front face whereas on the rear face negative values of the pressure coefficient have been observed. The positive pressure coefficient for different height-ratios does not vary too much but the negative values of pressure coefficient are higher for all points on the surface as the bluff body approaches towards the upper wall of the wind tunnel. The drag coefficient decreases with the increase in angle of attack as the height-ratio decreases. The maximum value of drag coefficient has been observed at an angle of attack nearly 50° for the square prism at all height-ratios. The heat transfer experiments have been carried out under constant heat flux condition. Heat transfer coefficient are determined from the measured wall temperature and ambient temperature and presented in the form of Nusselt number. Both local and average Nusselt numbers have been presented for various height-ratios. The variation of local Nusselt number has been shown with non-dimensional distance for different angles of attack. The variation of average Nusselt number has also been shown with different angles of attack. The local as well as average Nusselt number decreases as the height-ratio decreases for all non-dimensional distance and angle of attack, respectively, for the square prism. The average Nusselt number for the square prism varies with the angle of attack. But there is no definite angle of attack at which the value of average Nusselt number is either maximum or minimum.  相似文献   

10.
The problem of natural convection in an inclined rectangular porous layer enclosure is studied numerically. The enclosure is heated from one side and cooled from the other by a constant heat flux while the two other walls are insulated. The effect of aspect ratio, inclination angle and Rayleigh number on heat transfer is studied. It is found that the enclosure orientation has a considerable effect on the heat transfer. The negative orientation sharply inhibits the convection and consequently the heat transfer and a positive orientation maximizes the energy transfer. The maximum temperature within the porous medium can be considerably higher than that induced by pure conduction when the cavity is negatively oriented. The peak of the average Nusselt number depends on the Rayleigh number and the aspect ratio. The heat transfer between the two thermally active boundaries is sensitive to the effect of aspect ratio. For an enclosure at high or low aspect ratio, the convection is considerably decreased and the heat transfer depends mainly on conduction.  相似文献   

11.
Consideration is given to the nonlinear problem on a shape of boundary between two viscous liquids, of which one displaces the other one from a solid surface, the Reynolds number being rather low. An asymptotic theory of wetting dynamics is developed that is of the second order with respect to small capillary numbers and valid for any ratio of viscosity coefficients of the media. A formula describing the dynamic contact angle (i.e. the inclination angle of the tangent to the interface) as a function of a distance to the solid is derived. Limitations on the angles for which the second-order theory is valid are shown. If the phase 2 viscosity is zero, the asymptotic second-order theory is valid for angles below 128.7°. A theory applicability domain depends on the ratio of viscosity coefficients. The applicability domain is not limited if the viscosity coefficients differ by a factor of less than four.  相似文献   

12.
Heat transfer characteristics of a slot/slots jet air impinging on a cylinder have been experimentally investigated for two different orientations of slot/slots jet plan with respect to cylinder axis. The experiments were carried out to study the effects of orientation of slot/slots jet plan with respect to cylinder axis on the rate of heat transfer from the cylinder. Two different jet–cylinder configurations were studied: (1) single slot jet aligned with cylinder axis (slot length = cylinder length), and (2) multiple slot jets equally spaces distributed orthogonal to cylinder axis (each slot length = cylinder diameter and sum of slots lengths = cylinder length). For each configuration, parametric effects of Reynolds numbers (Re) ranging from 1,000 to 10,000, dimensionless slot widths (W/d) ranging from 0.125 to 0.5, and dimensionless slot orifice-to-cylinder spacing (Z/W) ranging from 1 to 12 on local and average Nusselt numbers around cylinder surface have been investigated. The results showed that: (1) cooling the cylinder by multiple slots jets situated orthogonal to cylinder axis gave more uniform surface temperature distributions and higher heat transfer rate than the case of cooling the cylinder by single slot jet aligned with cylinder axis, (2) for both configurations the Nusselt number around the cylinder increased with increasing Re and W/d, and (3) for both configurations there was a certain Z/W in the range 4<Z/W<6 at which the stagnation and mean Nusselt number were maximum. Correlations for the mean Nusselt numbers around cylinder surface have been presented for both configurations. Comparisons between the correlations predictions and the present and other previous experimental data have been conducted.  相似文献   

13.
Measurements of quasi-static advancing contact angles of refrigerant R134a on copper and aluminum surfaces are reported over a temperature range from 0 °C to 80 °C. The metal surfaces tested were aluminum (alloy 3003) and copper (alloy 101) plates. Measurements were done using a direct optical observation technique where the liquid meniscus at the surface of a vertical plate was captured using a high magnification camera system. The contact angle of solid–liquid interface was deduced by enhancing and manipulating the digital image using solid modeling software by drawing a tangent line to the meniscus at the intersection location of the solid, liquid and vapor. Values of the contact angle were found to vary between 8.3° and 5.6° for aluminum and between 5.1° and 6.5° for copper when the temperature rose from 0 °C to 80 °C. Maximum standard deviation amongst the measured values of contact angles was 1.3°.  相似文献   

14.
Natural convection heat transfer from a vertical isothermal plate with pin fins is numerically studied by solving the Navier–Stokes equations along with the energy equation. The average Nusselt number for the plate with different configurations of pin fins is obtained. The average Nusselt number is found to increase with increasing aspect ratio of the fin and to decrease with increasing angle of fin inclination with respect to the plate. There is only a minor difference between the average Nusselt numbers for in-line and staggered arrangement of fins for the range of parameters studied in the present work. A correlation is developed to predict the average Nusselt number of the plate as a function of fin spacing in the streamwise and spanwise directions, aspect ratio of the fin, and its angle of inclination.  相似文献   

15.
A numerical investigation is carried out to study the effect of splitter’s inclination angle behind an inclined square cylinder on the forced convection heat transfer in a plan channel using the lattice Boltzmann method (LBM). The simulations are conducted for the pertinent parameters in the following ranges: the Reynolds number Re=50–300, the gap ratio G/d = 2, and the splitter’s inclination angle θ = 0 ?–90?. The results show that with the increase in the angle of the splitter, the drag coefficient initially decreases and then increases. Moreover, the time-averaged Nusselt number at a certain angle increases noticeably.  相似文献   

16.
An experimental study has been conducted to investigate the condensate carryover phenomena in dehumidifying heat exchangers. Two wavy finned-tube coils were tested, for which the fin surfaces were treated to provide either low or high contact angles. The receding contact angle on the fins of the two coils were 70° and 10°, respectively. The distribution of condensate carryover was measured along the tunnel bottom downstream from the coil for different air frontal velocities. As the frontal velocity increases, the quantity of condensate carryover increases, and the condensate is blown further from the coil. The receding contact angle on the fin surface is a key factor controlling the condensate carryover characteristics. The coil having a 10° receding contact angle shows significantly less condensate carryover than the coil having a 70° receding contact angle. Numerous condensate droplets and bridges were observed on the fin surfaces of the 70° receding contact angle coil; however, few were seen for the 10° receding contact angle coil. The dominant carryover results from droplets formed from bridged condensate, and the diameter of the resulting droplets is approximately 3.0 mm.  相似文献   

17.
Computational and experimental studies of the fluid motion and heat transfer characteristics of an incompressible fluid contained in a non-rectangular inclined enclosure are described in this paper. The enclosure has two 45° inclined side walls one of which was heated and the other cooled. The remaining two sides of the enclosure are parallel and insulated. The enclosure was rotated about the long axis in steps of 30° through 360°. Experiments were performed to study the effects of Rayleigh number, aspect ratios and orientation of the enclosure. The computational method uses a mesh transformation technique coupled with the introduction of ‘false transient’ parameters for the steady state solution of the problem. The experimental method uses smoke for flow visualization studies. With aspect ratios of 3 and 6, the results indicate that the heat transfer and fluid motion within the enclosure is a strong function of both the Rayleigh number and the cavity orientation angle. A minimum and a maximum mean Nusselt number occurred as the angle of inclination was increased from 0 to 360°. A transition in the mode of circulation occurred at the angle corresponding to the minimum or maximum rate of heat transfer. Stream lines and isotherms are presented for the most representative cases  相似文献   

18.
This paper represents the detailed results of an evolutionary optimization framework towards the exploration of vortex mechanisms leading to effective anti-vortex film cooling. In this regards, several arrangements of triple cooling holes were studied on flat and curved geometries using differential-evolution optimization algorithm and a modified Reynolds-stress based flow solver. Depending on the flow and geometric parameters, four distinct types of vortex interaction with different cooling mechanisms were identified. The vortex-trapping mechanism, observed in the optimized upstream arrangement acts through imposing a mild downwash over the main counter-rotating vortex pair and provides the best cooling effectiveness for the low injection angle (less than 30°) cases. The vortex-suppression and -balancing are the optimal possible solutions of the adjacent arrangement. The latter is the classic well-known type of anti-vortex cooling, while the former provides a sudden strong controlling potential for high blowing ratios (higher than 1.0) and high injection angle film cooling. For the non-flat surfaces the triple holes effectively perform up to blowing-ratio of 2.0. However, the reverse-vortex-trapping mechanism occurring in the downstream arrangement is recommended for convex surfaces, while the adjacent arrangement is the choice for concave regions. In general, there is a possibility of reducing the coolant consumption about 30% through increasing the pitch-to-diameter ratio, while the values of cooling-effectiveness still remain in an acceptable range.  相似文献   

19.
Two-dimensional numerical simulations of laminar natural convection in a partially cooled, differentially heated inclined cavities are performed. One of the cavity walls is entirely heated to a uniformly high temperature (heat source) while the opposite wall is partially cooled to a lower temperature (heat sink). The remaining walls are adiabatic. The tilt angle of the cavity is varied from 0° (heated from left) to −90° (heated from top). The fast false implicit transient scheme (FITS) algorithm, developed earlier by the same authors, is modified to solve the derived variables vorticity-streamfunction formulation. The effects of aspect ratio (AR), sink–source ratio and tilt angle on the average Nusselt number are examined through a parametric study; solutions are obtained for two Grashof numbers, 105 and 107. Flow patterns and isotherms are used to investigate the heat transfer and fluid flow mechanisms inside the cavity. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
Experimental and numerical studies were carried out to investigate forced convection heat transfer and flow features around the downstream elliptic cylinder in four staggered cylinders in cross flow. The elliptic cylinders examined had an axis ratio (b/c) of 1:2, and they were arranged with zero angle of attack to the upstream flow. The present heat transfer measurements were obtained by heating only the downstream elliptic cylinder (test cylinder) under the condition of constant heat flux. The testing fluid was air and the Reynolds number based on the major axis length (c) was ranged from 4,000 to 45,570. The tested longitudinal spacing ratio (Sx/c) and the transversal spacing ratio (Sy/b) were in the ranges of 1.5 ≤ Sx/c ≤ 4.0 and 1.5 ≤ Sy/b ≤ 4.0, respectively. The air flow pattern and temperature fields around the four staggered elliptic cylinders were predicted by using CFD software package. Also, a flow visualization study was made to show the flow features around the elliptic cylinders. It was observed that Num of the downstream elliptic cylinder in four staggered cylinders was higher than that of three in-line cylinders for all tested spacing ratios and Reynolds numbers except for Re = 4,000. It was clear that, at lower Reynolds number values (Re < 14,100), the average Nusselt number of the downstream elliptic cylinder in three staggered arrangement was higher than that of the downstream cylinder in four staggered arrangement for all tested spacing ratios. On the other hand, at Re > 14,100, the tested elliptic cylinder in four staggered arrangement had the higher values of the average Nusselt number. Moreover, in four staggered arrangement, the maximum average Nusselt number enhancement ratio (average Nusselt number of the tested downstream cylinder/average Nusselt number of a single elliptic cylinder) was found to be about 2.0, and was obtained for spacing ratios of Sx/c = 2.5, Sy/b = 2.5 and at Re = 32,000. Finally, the average Nusselt number of the tested cylinder in four staggered arrangement was correlated in terms of Reynolds number and cylinder spacing ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号