首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melchert WR  Rocha FR 《Talanta》2005,65(2):461-465
Nitrate determination in waters is generally carried out with cadmium filings and carcinogenic reagents or by reaction with phenolic compounds in highly concentrated sulfuric acid medium. In this work, it was developed a green analytical procedure for nitrate determination in natural waters based on direct spectrophotometric measurements in ultraviolet, using a flow-injection system with an anion-exchange column for separation of nitrate from interfering species. The proposed method employs only one reagent (HClO4) in a minimum amount (equivalent to 18 μL concentrated acid per determination), and allowed nitrate determination within 0.50-25.0 mg L−1, without interference of up to 200.0 mg L−1 humic acid; 1.0 mg L−1 NO2; 200.0 mg L−1 PO43−; 75.0 mg L−1 Cl; 50.0 mg L−1 SO42− and 15.0 mg L−1 Fe3+. The detection limit (99.7% confidence level) and the coefficient of variation (n = 20) were estimated as 0.1 mg L−1 and 0.7%, respectively. The results obtained for natural water samples were in agreement with those achieved by the reference method based on nitrate reduction with copperized cadmium at the 95% confidence level.  相似文献   

2.
Thanyarat Chuesaard 《Talanta》2009,79(4):1181-1187
An interfacing has been developed to connect a spectrophotometer with a personal computer and used as a readout system for development of a simple, rapid and sensitive reversed flow injection (rFI) procedure for chlorate determination. The method is based on the oxidation of indigo carmine by chlorate ions in an acidic solution (dil. HCl) leading to the decrease in absorbance at 610 nm. The decrease in absorbance is directly related to the chlorate concentration present in the sample solutions. Optimum conditions for chlorate were examined. A linear calibration graph over the range of 0.1-0.5 mg L−1 chlorate was established with the regression equation of Y = 104.5X + 1.0, r2 = 0.9961 (n = 6). The detection limit (3σ) of 0.03 mg L−1, the limit of quantitation (10σ) of 0.10 mg L−1 and the RSD of 3.2% for 0.3 mg L−1 chlorate (n = 11) together with a sample throughput of 92 h−1 were obtained. The recovery of the added chlorate in spiked water samples was 98.5 ± 3.1%. Major interferences for chlorate determination were found to be BrO3, ClO2, ClO and IO3 which were overcome by using SO32− (as Na2SO3) as masking agent. The method has been successfully applied for the determination of chlorate in spiked water samples with the minimum reagent consumption of 14.0 mL h−1. Good agreement between the proposed rFIA and the reference methods was found verified by Student's t-test at 95% confidence level.  相似文献   

3.
A novel, simple and green procedure is presented for the determination of boron. The method is based on ultrasound-assisted conversion of boron to tetrafluoroborate anion and the formation of an ion pair between BF4 and Astra Phloxine reagent (R), followed by dispersive liquid-liquid microextraction of the ion pair formed and subsequent UV-vis spectrophotometric detection. The conversion of boron to tetrafluoroborate anion is performed in an acidic medium of 0.9 mol L−1 H2SO4 in the presence of 0.1 mol L−1 F- by means of 10 min of ultrasonication. The extraction of the ion pair formed between BF4 and R (1 × 10−4 mol L−1 R) is carried out by dispersive liquid-liquid microextraction using 0.5 mL of amyl acetate (as extraction solvent), tetrachloromethane (as auxiliary solvent) and acetonitrile (as dispersive solvent) in a ratio of 1:1:2. The absorbance of the coloured extracts obeys Beer's law in the range 0.22-18.7 mg L−1 of B(III) at 553 nm wavelength. The limit of detection calculated from a blank test (n = 10) based on 3 s is 0.015 mg L−1 of B(III). The method was applied to the determination of boron in mineral waters.  相似文献   

4.
A simple, precise, and accurate hydrophilic interaction liquid chromatographic (HILIC) method has been developed for the determination of five aromatic amines in environmental water samples. Chromatography was carried out on a bare silica column, using a mixture of acetonitrile and a buffer of NaH2PO4–H3PO4 (pH 1.5, containing 10 mM NaH2PO4) (85:15, v/v) as a mobile phase at a flow rate of 1 mL min−1. Aromatic amines were detected by UV absorbance at 254 nm. The linear range of amines was good (r2 > 0.998) and limit of detection (LOD) within 0.02–0.2 mg L−1 (S/N = 3). The retention mechanism for the analytes under the optimum conditions was determined to be a combination of adsorption, partition and ionic interactions. The proposed method was applied to the environmental water samples. Aromatic amines were isolated from aqueous samples using solid-phase extraction (SPE) with Oasis HLB cartridges. Recoveries of greater than 75% with precision (RSD) less than 12% were obtained at amine concentrations of 5–50 μg L−1 from 100 mL river water and influents from a wastewater treatment plant (WWTP). The present HILIC technique proved to be a viable method for the analysis of aromatic amines in the environmental water samples.  相似文献   

5.
Yu HM  Song H  Chen ML 《Talanta》2011,85(1):625-630
A novel adsorbent-silica gel bound dithizone (H2Dz-SG) was prepared and used as solid-phase extraction of copper from complex matrix. The H2Dz-SG is investigated by means of FT-IR spectra and the SEM images, demonstrating the bonding of dithizone. The H2Dz-SG quantitatively adsorb copper ions, and the retained copper is afterwards collected by elution of 10% (v/v) nitric acid. An on-line flow injection solid-phase extraction procedure was developed for trace copper separation and preconcentration with detection by flame atomic spectrometry. By loading 5.4 mL of sample solution, a liner range of 0.5-120 μg L−1, an enrichment factor of 42.6, a detection limit of 0.2 μg L−1 and a precision of 1.7% RSD at the 40 μg L−1 level (n = 11) were obtained, along with a sampling frequency of 47 h−1. The dynamic sorption capacity of H2Dz-SG to Cu2+ was 0.76 mg g−1. The accuracy of the proposed procedure was evaluated by determination of copper in reference water sample. The potential applications of the procedure for extraction of trace copper were successfully accomplished in water samples (tap, rain, snow, sea and river). The spiking recoveries within 91-107% are achieved.  相似文献   

6.
A simple chiral high-performance liquid chromatography (HPLC) method with ultraviolet (UV) and circular dichroism (CD) detection was developed and validated for measuring benalaxyl enantiomers using (R,R) Whelk-O 1 column. The effects of mobile phase composition and column temperature on the entioseparation were investigated. A CD detector was used to determine the elution order of the enantiomers. Excellent resolution was easily obtained using n-hexane-polar organic alcohols mobile phase. The chiral recognition mechanism was also discussed. Based on the developed chiral HPLC method, enantioselective analysis methods for this fungicide in environment matrix (soil and water) were developed and validated. Good linearities were obtained over the concentration range of 0.25-25 mg L−1 for both enantiomers. Liquid-liquid extraction and solid phase extraction (SPE) were used for the enrichment and cleanup of soil and water samples. Recoveries for the two enantiomers were 79-91% at 0.02, 0.04 and 0.2 mg kg−1 levels from soil, and 89-101% at 0.0025, 0.01 and 0.05 mg L−1 levels from water. Run-to-run and day-to-day assay precisions were below 10% for both enantiomers at concentrations of 0.5, 1 and 5 mg L−1. Individual detection limits of the two enantiomers were both 2 ng. Limits of detection (LOD) were 0.004 mg kg−1 in soil and 0.001 mg L−1 in water.  相似文献   

7.
A sequential injection method (SIA) for carbon speciation in inland bathing waters was developed comprising, in a single manifold, the determination of dissolved inorganic carbon (DIC), free dissolved carbon dioxide (CO2), total carbon (TC), dissolved organic carbon and alkalinity. The determination of DIC, CO2 and TC was based on colour change of bromothymol blue (660 nm) after CO2 diffusion through a hydrophobic membrane placed in a gas diffusion unit (GDU). For the DIC determination, an in-line acidification prior to the GDU was performed and, for the TC determination, an in-line UV photo-oxidation of the sample prior to GDU ensured the conversion of all carbon forms into CO2. Dissolved organic carbon (DOC) was determined by subtracting the obtained DIC value from the TC obtained value. The determination of alkalinity was based on the spectrophotometric measurement of bromocresol green colour change (611 nm) after reaction with acetic acid. The developed SIA method enabled the determination of DIC (0.24–3.5 mg C L−1), CO2 (1.0–10 mg C L−1), TC (0.50–4.0 mg C L−1) and alkalinity (1.2–4.7 mg C L−1 and 4.7–19 mg C L−1) with limits of detection of: 9.5 μg C L−1, 20 μg C L−1, 0.21 mg C L−1, 0.32 mg C L−1, respectively. The SIA system was effectively applied to inland bathing waters and the results showed good agreement with reference procedures.  相似文献   

8.
The present paper describes a direct procedure for the determination of catechin and epicatechin concentrations in red wines employing reverse-phase high performance liquid chromatography (RP HPLC) and detection by fluorescence. The method was performed using a sample volume of 10 µL without dilution. The separation process employed a Chromolith performance RP-18e (100 mm × 4.6 mm) column, and the mobile phase was composed of solvent A: methanol-acetic acid-water (90:8:2) and solvent B: water-acetic acid-methanol (10:2:88) at a flow rate of 1.0 mL min− 1. Linearity was observed in the range of 1 to 30 mg L− 1, with limits of detection and quantification of 0.27 and 0.89 mg L− 1, respectively, for catechin and 0.33 and 1.01 mg L− 1, respectively, for epicatechin. The precisions estimated by the relative standard deviation were 3.34 and 1.09% for catechin concentrations of 0.5 and 20 mg L− 1 respectively and 2.82 and 0.49% for epicatechin concentrations of 0.5 and 20 mg L− 1, respectively. The evaluation of the accuracy was done using an addition/recovery assay. Four wine samples were used, and the recoveries varied from 105 to 108% for catechin and from 97 to 119% for epicatechin. The method was applied to the analysis of red wine samples collected from the São Francisco region, Bahia State, Brazil. Nine samples were analyzed, and the catechin and epicatechin concentrations varied from 7.51 to 73.20 and from 5.08 to 43.32 mg L− 1, respectively. The concentrations found agree with data reported in the literature.  相似文献   

9.
Dissolved reactive phosphorus (DRP) was determined as orthophosphate (PO4-P) in fresh and saline water samples by flow-injection (FI) amperometry, without and with in-valve column preconcentration. Detection is based on reduction of the product formed from the reaction of DRP with acidic molybdate at a glassy carbon working electrode (GCE) at 220 mV versus the Ag/AgCl reference electrode. A 0.1 M potassium chloride solution was used as both supporting electrolyte and eluent in the preconcentration system. For the FI configuration without preconcentration, a detection limit of 3.4 μg P l−1 and sample throughput of 70 samples h−1 were achieved. The relative standard deviations for 50 and 500 μg P l−1 orthophosphate standards were 5.2 and 5.9%, respectively. By incorporating an ion exchange preconcentration column, a detection limit of 0.18 μg P l−1 was obtained for a 2-min preconcentration time (R.S.D.s for 0.1 and 1 μg P l−1 standards were 22 and 1.0%, respectively). Potential interference from silicate, sulfide, organic phosphates and sodium chloride were investigated. Both the systems were applied to the analysis of certified reference materials and water samples.  相似文献   

10.
A new automated spectrophotometric method for the determination of total sulfite in white and red wines is reported. The assay is based on the reaction of o-phthalaldehyde (OPA) and ammonium chloride with the analyte in basic medium under SI conditions. Upon on-line alkalization with NaOH, a blue product is formed having an absorption maximum at 630 nm. The parameters affecting the reaction - temperature, pH, ionic strength, amount concentration and volume of OPA, amount concentration of ammonium chloride, flow rate and reaction coil length - and the gas-diffusion process - sample and HCl volumes, length of mixing coil, donor flow rate - were studied. The proposed method was validated in terms of linearity (1-40 mg L−1, r = 0.9997), limit of detection (cL = 0.3 mg L−1) and quantitation (cQ = 1.0 mg L−1), precision (sr = 2.2% at 20 mg L−1 sulfite, n = 12) and selectivity. The applicability of the analytical procedure was evaluated by analyzing white and red wine samples, while the accuracy as expressed by recovery experiments ranged between 96% and 106%.  相似文献   

11.
Vidigal SS  Tóth IV  Rangel AO 《Talanta》2011,84(5):1298-1303
A sequential injection lab-on-valve (SI-LOV) system was used to develop a new methodology for the determination of iron in wine samples exploiting the bead injection (BI) concept for solid phase extraction and spectrophotometric measurement. Nitrilotriacetic Acid (NTA) Superflow resin was used to build the bead column of the flow through sensor. The iron (III) ions were retained by the bead column and react with SCN producing an intense red colour. The change in absorbance was monitored spectrophotometrically on the optosensor at 480 nm. It was possible to achieve a linear range of 0.09-5.0 mg L−1 of iron, with low sample and reagent consumption; 500 μL of sample, 15 μmol of SCN, and 9 μmol of H2O2, per assay. The proposed method was successfully applied to the determination of iron in wine, with no previous treatment other than dilution, and to other food samples.  相似文献   

12.
A molecularly imprinted polymer (MIP) designed to enable the selective extraction of carbamazepine (CBZ) from effluent wastewater and urine samples has been synthesised using a non-covalent molecular imprinting approach. The MIP was evaluated chromatographically in the first instance and its affinity for CBZ also confirmed by solid-phase extraction (SPE). The optimal conditions for SPE consisted of conditioning of the cartridge using acidified water purified from a Milli-Q system, loading of the sample under basic aqueous conditions, clean-up using acetonitrile and elution with methanol. The attractive molecular recognition properties of the MIP gave rise to good CBZ recoveries (80%) when 100 mL of effluent water spiked with 1 μg L−1 was percolated through the polymer. For urine samples, 2 mL samples spiked with 2.5 μg L−1 CBZ were extracted with a recovery of 65%. For urine, the linear range was 0.05-24 mg L−1, the limit of detection was 25 μg L−1 and precision, expressed as relative standard deviation at 0.5 mg L−1 (n = 3), was 3.1% and 12.6% for repeatability and reproducibility between days, respectively.  相似文献   

13.
A new and simple flow injection system procedure has been developed for the indirect determination of cyanide. The method is based on insertion of aqueous cyanide solutions into an on-line cadmium carbonate packed column (25% m/m suspended on silica gel beads) and a sodium hydroxide with pH 10 is used as the carrier stream. The eluent containing the analyte as cadmiumcyanide complexes, produced from reaction between cadmium carbonate and cyanide, measured by flame atomic absorption spectrometry. The absorbance is proportional to the concentration of cyanide in the sample. The linear range of the system is up to 15 mg L−1 with a detection limit 0.2 mg L−1 and sampling rate 72 h−1. The method is suitable for determination of cyanide in industrial waste waters with a relative standard deviation better than 1.22%.  相似文献   

14.
Solid support assisted derivatization coupled to diffuse reflectance spectroscopy (DRS) was proposed and proved useful for the detection and quantification of aliphatic amines in water as an example. Dabsyl chloride (DBS), ninhydrin and sodium 1,2-naphtoquinone 4-sulphonate (NQS) were assayed as derivatization reagents. C18 and SDB-XC disks and C18 cartridges were tested for amine retention and after that derivatization. The decrease of the orange colour of dabsyl chloride on SBD-XC disks produced by the formation of its derivative with methylamine in the support (10 min at 100 °C) allowed the selective determination of the amine at concentration level equal or higher than 0.5 mg L−1. Ninhydrin can be used for methylamine, ethylamine, propylamine, butylamine and pentylamine (between 5 and 15 mg L−1) by measuring the diffuse reflectance produced by the brown derivative formed in C18 extraction disks after 15 min at 100 °C. NQS and C18 SPE columns can be also employed to estimate amines, but the detection limits were higher than those provided by DBS and Ninhydrin, around 10 mg L−1. As an example, found concentration of methylamine or total amines (expressed as -NH2-N mg L−1) in a wastewater sample is given employing dabsyl chloride or ninhydrin reagents, respectively with satisfactory results.  相似文献   

15.
Wittaya Ngeontae 《Talanta》2009,78(3):1004-630
Chemically modified silica containing amidoamidoxime group was studied as a sorbent for solid-phase extraction (SPE) and preconcentration of Cu(II) prior to determination by flame atomic absorption spectrometry (FAAS). The sorbent showed an extremely high selectivity towards Cu(II) in the pH range of 4-6, while the extraction of Pb(II), Cd(II), Ni(II) and Co(II) was low. The adsorption isotherm followed the Langmuir model and the maximum sorption capacity of 0.0163 mmol Cu(II) g−1 was achieved. In the flow system, Cu(II) was completely retained on a column containing 40 mg of the modified silica at the flow rate of 4.0 mL min−1 and quantitatively eluted by 5 mL of 1% (v/v) HNO3. No interference from Na+, K+, Mg2+, Ca2+, Cl and SO42− at 10, 100 and 1000 mg L−1 was observed. When applied for preconcentration and determination of Cu(II) in tap water, pond water, and seawater, the recoveries were 96, 101, and 95%, respectively, with high precision (% relative standard deviation (R.S.D.) < 4) and low method detection limit (9 μg L−1).  相似文献   

16.
The paper presents a new method for a simultaneous determination of inorganic nitrogen species in the oxidized (NO2, NO3) and reduced (NH4+) form in rain water samples. The method is based on a system of nitrogen species separation employing ion exchange and diode-array detection. The ions are separated in a strong ion-exchanger, nitrites and nitrates are determined directly at 208 and 205 nm, respectively, while the ammonium ions are determined in the column hold-up time after a post-column derivatization by the Nessler reagent, at 425 nm. The use of a diode-array detector permits a simultaneous identification of the inorganic nitrogen species in 8 min. The detection limits obtained are: NO2, 0.1 mg L−1; NO3, 0.05 mg L−1; NH4+, 1 mg L−1. The method proposed has been successfully used for speciation analysis of inorganic nitrogen in precipitation.  相似文献   

17.
A vapor generation procedure to determine Cd by atomic fluorescence spectrometry (AFS) has been established. Volatile species of Cd are generated by following reaction of acidified sample containing Fe(II) and l-cysteine (Cys) with sodium tetrahydroborate (NaBH4). The presence of 5 mg L−1 Fe(II) and 0.05% m/v Cys improves the efficiency of Cd vapor generation substantially about four-fold compared with conventional thiourea and Co(II) system. Three experiments with different mixing sequences and reaction times are designed to study the reaction mechanism. The results document that the stability of Cd(II)–Cys complexes is better than Cys–THB complexes (THB means NaBH4) while the Cys–THB complexes have more contribution to improve the Cd vapor generation efficiency than Cd(II)–Cys complexes. Meanwhile, the adding of Fe(II) can catalyze the Cd vapor generation. Under the optimized conditions, the detection limit of Cd is 0.012 μg L−1; relative standard deviations vary between 0.8% and 5.5% for replicate measurements of the standard solution. In the presence of 0.01% DDTC, Cu(II), Pb(II) and Zn(II) have no significant influence up to 5 mg L−1, 10 mg L−1and 10 mg L−1, respectively. The accuracy of the method is verified through analysis of the certificated reference materials and the proposed method has been applied in the determination of Cd in seafood and rice samples.  相似文献   

18.
The potential of carbon nanotubes for the solid phase extraction of parabens in cosmetic products and the detection using a corona-charged aerosol detector (C-CAD) is presented in this work. The analytical procedure is based on a conventional solid phase extraction step for which 20 mg of multi-walled carbon nanotubes were packed in a 3-mL commercial SPE cartridge. Methylparaben, ethylparaben, propylparaben and butylparaben were thus isolated and preconcentrated from the pre-treated samples and subsequently separated on a RP-C18 column using acetonitrile:water, 50:50 (v/v) as mobile phase. The analytical signals for the individual parabens were obtained using C-CAD. The experimental variables affecting the extraction procedure and the instrumental detection have been deeply studied. Limits of detection were in the range of 0.5–2.1 mg L−1, while the linear range was extended up to 400 mg L−1. The average precision of the method varied between 3.3–3.8% (repeatability) and 4.3–7.6% (reproducibility). Finally, the optimized procedure was applied to the determination of the target preservatives in a variety of cosmetic products with satisfactory results.  相似文献   

19.
Manuela Kim 《Talanta》2007,72(3):1054-1058
A simple and sensitive HPLC post-derivatization method with colorimetric detection has been developed for the determination of N-nitroso glyphosate in samples of technical glyphosate. Separation of the analyte was accomplished using an anionic exchange resin (2.50 mm × 4.00 mm i.d., 15 μm particle size, functional group: quaternary ammonium salt) with Na2SO4 0.0075 M (pH 11.5) (flow rate: 1.0 mL min−1) as mobile phase. After separation, the eluate was derivatized with a colorimetric reagent containing sulfanilamide 0.3% (w/v), [N-(1-naphtil)ethilendiamine] 0.03% (w/v) and HCl 4.5 M in a thermostatized bath at 95 °C. Detection was performed at 546 nm. All stages of the analytical procedure were optimized taking into account the concept of analytical minimalism: less operation times and costs; lower sample, reagents and energy consumption and minimal waste. The limit of detection (k = 3) calculated for 10 blank replicates was 0.04 mg L−1 (0.8 mg kg−1) in the solid sample which is lower than the maximum tolerable accepted by the Food and Agriculture Organization of the United Nations.  相似文献   

20.
A flow injection (FI) method with flame atomic absorption spectrometry (FAAS) detection was developed for the determination and speciation of nitrite and nitrate in foodstuffs and wastewaters. The method is based on the oxidation of nitrite to nitrate using a manganese(IV) dioxide oxidant microcolumn where the flow of the sample through the microcolumn reduces the MnO2 solid phase reagent to Mn(II), which is measured by FAAS. The absorbance of Mn(II) are proportional to the concentration of nitrite in the samples. The injected sample volume was 400 μL with a sampling rate of analyses was 90 h−1 with a relative standard deviation better than 1.0% in a repeatability study. Nitrate is reduced to nitrite in proposed FI-FAAS system using a copperized cadmium microcolumn and analyzed as nitrite. The calibration curves were linear up to 20 mg L−1 and 30 mg L−1 with a detection limit of 0.07 mg L−1 and 0.14 mg L−1 for nitrite and nitrate, respectively. The results exhibit no interference from the presence of large amounts of ions. The method was successfully applied to the speciation of nitrite and nitrate in spiked natural water, wastewater and foodstuff samples. The precision and accuracy of the proposed method were comparable to those of the reference spectrophotometric method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号