首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
A new flow injection (FIA) procedure for the preconcentration of cadmium in urine using multiwalled carbon nanotubes (MWCNT) as sorbent and posterior electrothermal atomization atomic absorption spectrometry (ETA-AAS) Cd determination has been developed. Cadmium was retained in a column filled with previously oxidized MWCNTs and it was quantitatively eluted with a nitric acid solution. The parameters influencing the adsorption-elution process such as pH of the sample solution, amount of sorbent and flow rates of sample as well as eluent solutions have been studied. Cd concentration in the eluent was measured by ETA-AAS under the optimized conditions obtained. The results indicated the elimination of urine matrix effect as a consequence of the preconcentration process performed. Total recovery of cadmium from urine at pH 7.2 using a column with 45 mg of MWCNTs as sorbent and employing a HNO3 0.5 mol L−1 solution for elution was attained. The detection limit obtained was 0.010 μg L−1 and the preconcentration factor achieved was 3.4. The method showed adequate precision (RSD: 3.4-9.8%) and accuracy (mean recovery: 97.4-100%). The developed method was applied for the determination of cadmium in real urine samples from healthy people (in the range of 0.14-2.94 μg L−1) with satisfactory results.  相似文献   

2.
An on-line preconcentration procedure for the determination of bismuth by flame atomic absorption spectrometry (FAAS) has been described. Lewatit TP-207 chelating resin, including iminodiacetate group, packed in a minicolumn was used as adsorbent material. Bi(III) was sorbed on the chelating resin, from which it could be eluted with 3 mol L−1 HNO3 and then introduced directly to the nebulizer-burner system of FAAS. Best preconcentration conditions were established by testing different resin quantities, acidity of sample, types of eluent, sample and eluent solution volumes, adsorption and elution flow rates, and effect of interfering ions. The detection limit of the method was 2.75 μg L−1 while the relative standard deviation was 3.0% for 0.4 μg mL−1 Bi(III) concentration. The developed method has been applied successfully to the determination of bismuth in pharmaceutical cream, standard reference materials and various natural water samples with satisfactory results.  相似文献   

3.
A sensitive preconcentration methodology for Cd determination at trace levels in water samples was developed in this work. 1-Butyl-3-methylimidazolium hexafluorophosphate ([C4MIM][PF6]) room temperature ionic liquid (RTIL) was successfully used for Cd preconcentration, as cadmium-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol complex [Cd-5-Br-PADAP]. Subsequently, Cd was back-extracted from the RTIL phase with 500 μL of 0.5 mol L−1 nitric acid and determined by electrothermal atomic absorption spectrometry (ETAAS). A preconcentration factor of 40 was achieved with 20 mL of sample. The limit of detection (LOD) obtained under optimum conditions was 3 ng L−1 and the relative standard deviation (R.S.D.) for 10 replicates at 1 μg L−1 Cd2+ concentration level was 3.5%, calculated at peak heights. The calibration graph was linear from concentration levels near the detection limits up to at least 5 μg L−1. A correlation coefficient of 0.9997 was achieved. Validation of the methodology was performed by standard addition method and analysis of certified reference material (CRM). The method was successfully applied to the determination of Cd in river and tap water samples.  相似文献   

4.
A novel on-line preconcentration and determination system based on a fiber-packed column was developed for speciation analysis of Cr in drinking water samples prior to its determination by flame atomic absorption spectrometry (FAAS). All variables involved in the development of the preconcentration method including, pH, eluent type, sample and eluent flow rates, interfering effects, etc., were studied in order to achieve the best analytical performance. A preconcentration factor of 32 was obtained for Cr(VI) and Cr(III). The levels of Cr(III) species were calculated by difference of total Cr and Cr(VI) levels. Total Cr was determined after oxidation of Cr(III) to Cr(VI) with hydrogen peroxide. The calibration graph was linear with a correlation coefficient of 0.999 at levels near the detection limit and up to at least 50 μg L−1. The relative standard deviation (R.S.D.) was 4.3% (C = 5 μg L−1 Cr(VI), n = 10, sample volume = 25 mL). The limit of detection (LOD) for both Cr(III) and Cr(VI) species was 0.3 μg L−1. Verification of the accuracy was carried out by the analysis of a standard reference material (NIST SRM 1643e “Trace elements in natural water”). The method was successfully applied to the determination of Cr(III) and Cr(VI) species in drinking water samples.  相似文献   

5.
In this study a method for the determination of low concentrations of silver in waters using solid-phase extraction with a flow injection analysis system and detection by flame atomic absorption spectrometry (FAAS) was developed. Moringa oleifera seeds were used as a biosorbent material. Chemical and flow variables of the on-line preconcentration system such as sample pH and flow rate, preconcentration time, eluent concentration and sorbent mass were studied. The optimum preconcentration conditions were obtained using sample pH in the range of 6.0-8.0, preconcentration time of 4 min at a flow rate of 3.5 mL min− 1, 0.5 mol L− 1 HNO3 eluent at a flow rate of 4.5 mL min− 1 and 35 mg of sorbent mass. With the optimized conditions, the preconcentration factor, precision, detection limit and sample throughput were estimated as 35 (for preconcentration of 14 mL sample), 3.8% (5.0 μg L− 1, n = 7), 0.22 μg L− 1 and 12 samples per hour, respectively. The developed method was successfully applied to mineral water and tap water, and accuracy was assessed through analysis of a certified reference material for water (APS-1071 NIST) and recovery tests, with recovery ranging from 94 to 101%.  相似文献   

6.
Polychlorotrifluoroethylene (PCTFE) in the form of beads was applied, as packing material for flow injection on-line column preconcentration and separation systems coupled with flame atomic absorption spectrometry (FAAS). Its performance characteristics were evaluated for trace copper determination in environmental samples. The on-line formed complex of metal with diethyldithiophosphate (DDPA) was sorbed on the PCTFE surface. Isobutyl methyl ketone (IBMK) at a flow rate of 2.8 mL min−1 was used to elute the analyte complex directly into the nebulizer-burner system of spectrophotometer. The proposed sorbent material reveal, excellent chemical and mechanical resistance, fast adsorption kinetics permitting the use of high sample flow rates up to 15 mL min−1 without loss of retention efficiency. For copper determination, with 90 s preconcentration time the sample frequency was 30 h−1, the enhancement factor was 250, which could be further improved by increasing the loading (preconcentration) time. The detection limit (3s) was cL = 0.07 μg L−1, and the precision (R.S.D.) was 1.8%, at the 2.0 μg L−1 Cu(II) level. For lead determination, the detection limit was cL = 2.7 μg L−1, and the precision (R.S.D.) 2.2%, at the 40.0 μg L−1 Pb(II) level. The accuracy of the developed method was evaluated by analyzing certified reference materials and by recovery measurements on spiked natural water samples.  相似文献   

7.
In this study a new method for determination of cadmium in alcohol fuel using Moringa oleifera seeds as a biosorbent in an on-line preconcentration system coupled to flame atomic absorption spectrometry (FAAS) was developed. Flow and chemical variables of the proposed system were optimized through multivariate designs. The limit of detection for cadmium was 5.50 μg L−1 and the precision was below 2.3% (35.0 μg L−1, n = 9). The analytical curve was linear from 5 to 150 μg L−1, with a correlation coefficient of 0.9993. The developed method was successfully applied to spiked alcohol fuel, and accuracy was assessed through recovery tests, with recovery ranging from 97.50 to 100%.  相似文献   

8.
A novel on-line preconcentration method based on liquid-liquid (L-L) extraction with room temperature ionic liquids (RTILs) coupled to flame atomic absorption spectrometry (FAAS) was developed for cadmium determination in plastic food packaging materials. The methodology is based on the complexation of Cd with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) reagent after sample digestion followed by extraction of the complex with the RTIL 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim][PF6]). The mixture was loaded into a flow injection analysis (FIA) manifold and the RTIL rich-phase was retained in a microcolumn filled with silica gel. The RTIL rich-phase was then eluted directly into FAAS. A enhancement factor of 35 was achieved with 20 mL of sample. The limit of detection (LOD), obtained as IUPAC recommendation, was 6 ng g−1 and the relative standard deviation (R.S.D.) for 10 replicates at 10 μg L−1 Cd concentration level was 3.9%, calculated at the peak heights. The calibration graph was linear and a correlation coefficient of 0.9998 was achieved. The accuracy of the method was evaluated by both a recovery study and comparison of results with direct determination by electrothermal atomic absorption spectrometry (ETAAS). The method was successfully applied for Cd determination in plastic food packaging materials and Cd concentrations found were in the range of 0.04-10.4 μg g−1.  相似文献   

9.
A novel automatic sequential injection (SI) single-drop micro-extraction (SDME) system is proposed as versatile approach for on-line metal preconcentration and/or separation. Coupled to electrothermal atomic absorption spectrometry (ETAAS) the potentials of this SI scheme are demonstrated for trace cadmium determination in water samples. A non-charged complex of cadmium with ammonium diethyldithiophosphate (DDPA) was produced and extracted on-line into a 60 μL micro-drop of di-isobutyl ketone (DIBK). The extraction procedure was performed into a newly designed flow-through extraction cell coupled on a sequential injection manifold. As the complex Cd(II)-DDPA flowed continuously around the micro-droplet, the analyte was extracting into the solvent micro-drop. All the critical parameters were optimized and offered good performance characteristics and high preconcentration ratios. For 600 s micro-extraction time, the enhancement factor was 10 and the sampling frequency was 6 h−1. The detection limit was 0.01 μg L−1 and the precision (RSD at 0.1 μg L−1 of cadmium) was 3.9%. The proposed method was evaluated by analyzing certified reference material.  相似文献   

10.
The physical and chemical characteristics of peat were assessed through measurement of pH, percentage of organic matter, cationic exchange capacity (CEC), elemental analysis, infrared spectroscopy and quantitative analysis of metals by ICP OES. Despite the material showed to be very acid in view of the percentage of organic matter, its CEC was significant, showing potential for retention of metal ions. This characteristic was exploited by coupling a peat mini-column to a flow system based on the multicommutation approach for the in-line copper concentration prior to flame atomic absorption spectrometric determination. Cu(II) ions were adsorbed at pH 4.5 and eluted with 0.50 mol L−1 HNO3. The influence of chemical and hydrodynamic parameters, such as sample pH, buffer concentration, eluent type and concentration, sample flow-rate and preconcentration time were investigated. Under the optimized conditions, a linear response was observed between 16 and 100 μg L−1, with a detection limit estimated as 3 μg L−1 at the 99.7% confidence level and an enrichment factor of 16. The relative standard deviation was estimated as 3.3% (n = 20). The mini-column was used for at least 100 sampling cycles without significant variation in the analytical response. Recoveries from copper spiked to lake water or groundwater as well as concentrates used in hemodialysis were in the 97.3-111% range. The results obtained for copper determination in these samples agreed with those achieved by graphite furnace atomic absorption spectrometry (GFAAS) at the 95% confidence level.  相似文献   

11.
A new time-based flow injection on-line solid phase extraction method for chromium(VI) and lead determination using flame atomic absorption spectrometry was developed. The use of hydrophobic poly-chlorotrifluoroethylene (PCTFE)-beads as absorbent in on-line preconcentration system was evaluated. Effective formation of ammonium pyrrolidine dithiocarbamate complexes and subsequently retention in PCTFE packed column, was achieved in pH range 1.0-1.6 and 1.5-3.2 for Cr(VI) and Pb(II) ions, respectively. The sorbed analyte was efficiently eluted with isobutyl-methyl-ketone for on-line FAAS determination. The proposed packing material exhibited excellent chemical and mechanical resistance, fast kinetics for adsorption of Cr(VI) and Pb(II) permitting the use of high sample flow rates at least up to 15 mL min−1 without loss of retention efficiency. For a preconcentration time of 90 s, the sample frequency was 30 h−1, the enhancement factor was 94 and 220, the detection limit was 0.4 and 1.2 μg L−1, while the precision (R.S.D.) was 1.8% (at 5 μg L−1) and 2.1% (at 30 μg L−1) for chromium(VI) and lead, respectively. The applicability and the accuracy of the developed method were estimated by the analysis spiked water samples and certified reference material NIST-CRM 1643d (Trace elements in water) and NIST-SRM 2109 (chromium(VI) speciation in water).  相似文献   

12.
This paper reports the development of a new strategy for low-level determination of copper in water samples by using a flow-injection system coupled to solid-phase extraction (SPE) using flame atomic absorption spectrometry (F AAS) as detector. In order to preconcentrate copper from samples, a minicolumn packed with a styrene-divinylbenzene resin functionalized with (S)-2-[hydroxy-bis-(4-vinyl-phenyl)-methyl]-pyrrolidine-1-carboxylic acid ethyl ester was used and the synthesis procedure is described. System operation is based on the on-line retention of Cu(II) ions at pH 9.0 ± 0.2 in a such minicolumn with posterior analyte elution with 2 mol l−1 HCl directly to the F AAS nebulizer. The influence of several chemical (sample pH, buffer concentration, HCl eluent concentration and effect of the ionic strength) and flow (sample and eluent flow rates and preconcentration time) variables that could affect the performance of this system were investigated as well as the possible interferents. At optimized conditions, for 2 min of preconcentration time (13.2 ml of sample volume), the system achieved a detection limit of 1.1 μg l−1, a R.S.D. 1% at 20 μg g l−1 and an analytical throughput of 25 h−1, whereas for 4 min of preconcentration time (26.4 ml of sample volume), a detection limit of 0.93 μg l−1, a R.S.D. 5.3% at 5 μg l−1 and a sampling frequency of 13 h−1 were reported.  相似文献   

13.
Pedro R. Aranda 《Talanta》2008,77(2):663-666
Cloud point extraction (CPE) has been used for the preconcentration of cadmium, after the formation of a complex with 2-(5-bromo-2-pyridylazo)-5-(diethylamino)-phenol (5-Br-PADAP), and further determination by graphite furnace atomic absorption spectrometry (ETAAS) using polyethyleneglicolmono-p-nonyphenylether (PONPE 7.5) as surfactant. The chemical variables that affect the cloud point extraction were optimized. The separation of the two phases was easily accomplished by cooling the mixture in order to make more viscous the surfactant-rich phase. In order to establish the optimum conditions for the determination of Cd by ETAAS, Pd + Mg, Pt, Ir, Rh and Ru were studied as chemical modifiers. The best thermal stabilization was obtained with Pd + Mg, with a maximum pyrolysis temperature of 1100 °C. Under the optimum conditions i.e., pH 9.0, [5-Br-PADAP] = 2.0 × 10−5 mol L−1, [PONPE 7.5] = 0.02% (w/v), an enhancement factor of 22-fold was reached. The lower limit of detection (LOD) obtained under the optimal conditions was 0.008 μg L−1. The precision for 10 replicate determinations at 0.2 μg L−1 Cd was 3.5% relative standard deviation (R.S.D.). The calibration graph using the preconcentration method was linear with a correlation coefficient of 0.9984 at levels close to the detection limit up to at least 1.0 μg L−1. The method was successfully applied to the determination of cadmium in urine samples and in a water standard reference material.  相似文献   

14.
Ibrahim S.I. Adam 《Talanta》2009,77(3):1160-1164
A newly simple flow injection wetting-film extraction system coupled to flame atomic absorption spectrometry (FAAS) has been developed for trace amount of cadmium determination. The sample was mixed on-line with sodium diethyl dithiocarbamate and the produced non-charged Cd(II)-diethyl dithiocarbamate (DDTC) chelate complex was extracted on the thin film of diisobutyl ketone (DIBK) on the inner wall of the PTFE extraction coil. The wetting-film with the extracted analyte was then eluted by a segment of the cover solvent, and transported directly to the FAAS for evaluation. All the important chemical and flow parameters were optimized. Under the optimized conditions an enhancement factor of 35, a sample frequency of 22 h−1 and a detection limit of cL = 0.7 μg l−1 Cd(II) were obtained for 60 s preconcentration time. The calibration curve was linear over the concentration range 1.5-45.0 μg l−1 Cd(II) and the relative standard deviation, R.S.D. (n = 10) was 3.9%, at 10.0 μg l−1 concentration level. The developed method was successfully applied to cadmium determination in a variety of environmental water samples as well as waste-water sample.  相似文献   

15.
Ayata S  Bozkurt SS  Ocakoglu K 《Talanta》2011,84(1):212-215
A new method based on microcolumn packed with ionic liquid-modified silica combined with flame atomic absorption spectrometry has been developed for the determination of lead in environmental samples. Several factors influencing the preconcentration efficiency of lead and its subsequent determination, such as pH of the sample, flow rate, mass of ionic liquid, and interfering effect, have been investigated. Lead could be quantitatively retained by ionic liquid-modified silica in the pH range of 5-7, and then eluted completely with 3.0 mL 1.0 mol L−1 HCl. The detection limit of this method for lead was 0.7 μg L−1 with preconcentration factor of 185, and the relative standard deviation (RSD) was 4.2% at 0.1 μg mL−1 Pb(II). This method has been applied for the determination of trace amount of lead in NIST standard reference material 2709 (San Joaquin Soil) and river water samples with satisfactory results.  相似文献   

16.
2-(Methylthio)aniline-modified Amberlite XAD-2 has been synthesized by coupling it through a NNNH group. The resulting chelating resin, characterized by elemental analysis, thermogravimetric analysis and infrared spectra, was used to preconcentrate Cd, Hg, Ni, Co, Cu and Zn ions. Several parameters, such as the distribution coefficient and sorption capacity of the chelating resin, pH and flow rates of uptake and stripping, and volume of sample and eluent, were evaluated. The effect of electrolytes and cations on the preconcentration was also investigated. The recoveries were >96%. The procedure was validated by standard addition and analysis of a standard river sediment material (GBW 08301, China). The developed method was utilized for preconcentration and determination of Cd, Hg, Ni, Co, Cu and Zn in tap water and river water samples by flame atomic absorption spectrometry with satisfactory results. The 3σ detection limit and 10σ quantification limit for Cd, Hg, Ni, Co, Cu and Zn were found to be 0.022, 0.028, 0.033, 0.045, 0.041, 0.064 μg l−1 and 0.041, 0.043, 0.052, 0.064, 0.058, 0.083 μg l−1, respectively.  相似文献   

17.
In this study a method for the determination of cadmium in fuel alcohol using solid-phase extraction with a flow injection analysis system and detection by flame atomic absorption spectrometry was developed. The sorbent material used was a vermicompost commonly used as a garden fertilizer. The chemical and flow variables of the on-line preconcentration system were optimized by means of a full factorial design. The selected factors were: sorbent mass, sample pH, buffer concentration and sample flow rate. The optimum extraction conditions were obtained using sample pH in the range of 7.3-8.3 buffered with tris(hydroxymethyl)aminomethane at 50 mmol L−1, a sample flow rate of 4.5 mL min−1 and 160 mg of sorbent mass. With the optimized conditions, the preconcentration factor, limit of detection and sample throughput were estimated as 32 (for preconcentration of 10 mL sample), 1.7 μg L−1 and 20 samples per hour, respectively. The analytical curve was linear from 5 up to at least 50 μg L−1, with a correlation coefficient of 0.998 and a relative standard deviation of 2.4% (35 μg L−1, n = 7). The developed method was successfully applied to spiked fuel alcohol, and accuracy was assessed through recovery tests, with recovery ranging from 94% to 100%.  相似文献   

18.
The development of an on-line preconcentration system with cloud point extraction for the determination of manganese is described. The system was used to determine manganese levels in food samples using flame atomic absorption spectrometry (FAAS). All steps of the cloud point extraction procedure were performed on-line, from the mixing of reagents to detection. The manganese ions are complexed in a mixture of the reagent 2-[2′-(6-methyl-benzothiazolylazo)]-4-bromophenol (Me-BTABr) and Triton X-114. The components are retained on a minicolumn and then desorbed with eluent acid to subsequent detection of manganese by FAAS. Under the optimized conditions, the method presented a detection limit of 0.7 μg L− 1 and an enrichment factor of 17 to a volume of 3000 μL. The sampling frequency was 30 h− 1. The accuracy of the method was tested by evaluating the amount of Mn in certified reference materials (apple leaves NIST 1515 and spinach leaves NIST 1570a). The proposed procedure was applied to food samples (shrimp powder, flaxseed flour, wheat flour, soy flour and oat), and the results agreed with those obtained by the determination of Mn in foods by atomic absorption spectrometry with electrothermal atomization (ETAAS).  相似文献   

19.
The present article reports on the application of modified multiwalled carbon nanotubes (MMWCNTs) as a new, easily prepared and stable solid sorbent for the preconcentration of trace rhodium ion in aqueous solution. Rhodium ions were complexed with 1-(2-pyridylazo)-2-naphthol (PAN) in the pH range of 3.2-4.7 and then the formed Rh-PAN complex was adsorbed on the oxidized MWCNTs. The adsorbed complex was eluted from MWCNTs sorbent with 5.0 mL of N,N-dimethylformamide (DMF). The rhodium in eluted solution was determined by flame atomic absorption spectrometry (FAAS). Linear range for the determination of rhodium was maintained between 0.16 ng mL−1 and 25.0 μg mL−1 in initial solution. Relative standard deviation for the 10 replicated determination of 4.0 μg mL−1 of rhodium was ±0.97%. Detection limit was 0.010 ng mL−1 in initial solution (3Sbl, n = 10) and preconcentration factor was 120. Sensitivity for 1% absorbance of rhodium (III) was 0.112 μg mL−1. The sorption capacity of oxidized MWCNTs for Rh (III) was 6.6 mg g−1. The effects of the experimental parameters, including the sample pH, flow rates of sample and eluent solution, eluent type, breakthrough volume and interference ions were studied for the preconcentration of Rh3+. The proposed method was successfully applied to the extraction and determination of rhodium in different samples.  相似文献   

20.
An on-line solid phase extraction (SPE) preconcentration system coupled to flame atomic absorption spectrometer (FAAS) was developed for determination of copper and cadmium at μg L−1 level. The method is based on the on-line retention of copper and cadmium on a microcolumn of alumina modified with sodium dodecyl sulfate (SDS) and 1,10-phenanthroline and subsequent elution with ethanol and determination by FAAS. The effect of chemical and flow variables that could affect the performance of the system was investigated. The relative standard deviation (n = 6) at 20 μg L−1 level for copper and cadmium were 1.4 and 2.2% and the corresponding limits of detection (based on 3σ) were 0.04 and 0.14 μg L−1, respectively. The method was successfully applied to determination of copper and cadmium in human hair and water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号