首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A high sensitive flow-injection chemiluminescence method for determination of calf thymus DNA and herring sperm DNA has been developed. The method is based on the chemiluminescence reaction of Rhodamine B-cerium(IV)-thermally denatured DNAs in sulfuric acid media. The proposed procedure allows quantitation of DNAs in the range 2.6×10−5 to 0.26 μg ml−1 for calf thymus DNA and 5.0×10−8 to 5.0×10−5 μg ml−1 for herring sperm DNA with correlation coefficients 0.9998 and 0.9996 (both n=11), respectively. The detection limits (3σ) are 6.5×10−6 μg ml−1 for calf thymus DNA and 4.3×10−8 μg ml−1 for herring sperm DNA. The possible mechanism of chemiluminescence in the system is discussed.  相似文献   

2.
A simple, inexpensive and reagent-less colorimetric micro flow analysis (μFA) system was implemented in a polymethyl methacrylate (PMMA) micro fluidic manifold. A T-shaped micro channel on a PMMA chip was fabricated by laser ablation and topped with molded polydimethylsiloxane (PDMS). The fabricated μFA system was integrated with the optical components as detector and applied to the determination of iron in water samples. It is based on the measurement of Fe(III)-nitroso-R salt complex at 720 nm formed by the reaction between Fe(III) and nitroso-R salt in an acetate buffer solution pH 5. The proposed μFA consumed very small amount of reagent and sample, it released waste of less than 2.0 mL h−1. The relative standard deviation (R.S.D.) was less than 2% (n = 11) with the recovery of 98.7 ± 0.12 (n = 5). The linear range for the determination of iron in water samples was over the range of 0.05-4.0 μg mL−1 with a correlation coefficient (r2) of 0.9994. The limit of detection (3σ) and limit of quantitation (10σ) were 0.021 μg mL−1 and 0.081 μg mL−1, respectively with a sample throughput of 40 h−1.  相似文献   

3.
A highly sensitive flow analysis system has been developed for the trace determination of reactive phosphate in natural waters, which uses a polymer inclusion membrane (PIM) with Aliquat 336 as the carrier for on-line analyte separation and preconcentration. The system operates under flow injection (FI) and continuous flow (CF) conditions. Under optimal FI conditions the system is characterised by a linear concentration range between 0.5 and 1000 μg L−1 P, a sampling rate of 10 h−1, a limit of detection of 0.5 μg L−1 P and RSDs of 3.2% (n = 10, 100 μg L−1) and 7.7% (n = 10, 10 μg L−1). Under CF conditions with 10 min stop-flow time and sample solution flow rate of 1.32 mL min−1 the flow system offers a limit of detection of 0.04 μg L−1 P, a sampling rate of 5 h−1 and an RSD of 3.4% (n = 5, 2.0 μg L−1). Interference studies revealed that anions commonly found in natural waters did not interfere when in excess of at least one order of magnitude. The flow system, operating under CF conditions, was successfully applied to the analysis of natural water samples containing concentrations of phosphate in the low μg L−1 P range, using the multipoint standard addition method.  相似文献   

4.
A highly sensitive and relatively interference-free spectrophotometric method for determination of calcium is described. The method is based on the reaction between calcium ions and carboxyazo-p-CH3 in aqueous citrate medium of pH 7, to form a blue complex with maximum absorption at 716 nm. The calibration is linear up to 0.12 μg ml−1 calcium with a repeatability (R.S.D.) of 1.0% at a concentration of 0.04 μg ml−1 (n=5). The molar absorptivity of the complex and Sandell’s sensitivity are 3.5×105 l mol−1 cm−1 and 0.11 ng cm−2, its 10σ limit of quantification and the 3σ limit of detection were found to be 0.3 ng ml−1 and 0.09 ng ml−1 respectively. The influence of reaction variables and the effect of interfering ions are studied; no interference was observed in clinical samples. The proposed method has been applied directly to the determination of calcium in clinical samples without the need for pre-concentration, masking metal ions and digesting samples.  相似文献   

5.
A liquid-phase microextraction method for the determination of trihalomethanes (THMs) including chloroform (CHCl3), bromodichloromethane (CHBrCl2), dibromochloromethane (CHBr2Cl) and bromoform (CHBr3) in water samples was developed, with analysis by gas chromatography-electron capture detection (GC-ECD). After the determination of the most suitable solvent and stirring rate for the extraction, several other parameters (solvent drop volume, extraction time and ionic strength of the sample) were optimized using a factorial design to obtain the most relevant variables. The optimized extraction conditions for 5 mL of sample volume in a 10 mL vial were as follows: n-hexane an organic solvent; a solvent drop volume of 2 μL; an extraction time of 5.0 min; a stirring rate of 600 rpm at 25 °C; sample ionic strength of 3 M sodium chloride. The linear range was 1-75 μg L−1 for the studied THMs. The limits of detection (LODs) ranged from 0.23 μg L−1 (for CHBr2Cl) to 0.45 μg L−1 (for CHCl3). Recoveries of THMs from fortified distilled water were over 70% for a fortification level of 15 μg L−1, and relative standard deviations of the recoveries were below 5%. Real samples collected from tap water and well water were successfully analyzed using the proposed method. The recovery of spiked water samples was from 73% to 78% with relative standard deviations below 7%.  相似文献   

6.
A sensitive and selective flow injection chemiluminescence (CL) method combined with controlled potential electrolysis technique was described for the determination of molybdenum. The method is based on the chemiluminescence reaction of luminol with unstable molybdenum(III) in alkaline solution. The molybdenum(III) was on-line reduced from molybdenum(VI) via controlled potential electrolysis technique using a homemade flow-through carbon electrolytic cell at the potential of −0.6 V (versus Ag/AgCl). The method allows the determination of molybdenum in the 5.0×10−10 to 5.0×10−7 g ml−1 range with a limit of detection (3σ) of 5×10−11 g ml−1 molybdenum. The relative standard deviation is 2.6% for the 1.0×10−9 g ml−1 molybdenum solution in 11 repeated measurements. This method was successfully applied to the determination of molybdenum in water samples.  相似文献   

7.
A novel, sensitive and high selective flow-injection chemiluminescence (FI-CL) method for the determination of phenol is reported, based upon its decreasing effect on the CL reaction of luminol with hydrogen peroxide catalyzed by manganese (III) deuteroporphyrin [MnDP, Scheme 1, 3] in alkaline solution. Under the selected optimized experimental conditions, the relative CL intensity was linear with phenol in the range of 4.0 × 10−9 to 4.0 × 10−7 g mL−1. The detection limit (3σ) was 6.3 × 10−10 g mL−1 and the relative standard deviation for 1.0 × 10−7 g mL−1 phenol (n = 11) was 2.99%. The regression equation was I = 120.79 + 1.14 × 1010c (R = 0.9936). This method has been applied to the determination of phenol in water with satisfactory results.  相似文献   

8.
Bortoleto GG  Cadore S 《Talanta》2005,67(1):169-174
A rapid and sensitive method for the on-line separation and pre-concentration of inorganic arsenic in water samples is described. The analyte in the pentavalent oxidation state is reduced to its trivalent form with l-cysteine and the total inorganic arsenic is sorbed onto activated alumina in the acid form in a mini-column coupled to a FI-HG AAS system. Afterwards, it is eluted with 3 mol l−1 HCl. An enrichment factor of 7 was obtained, allowing an analytical flow rate of about 28 determinations per hour. The limits of detection (3σ) and of quantification (10σ) were calculated as LOD = 0.15 μg l−1 of As and LOQ = 0.5 μg l−1 of As, respectively. Relative standard deviations (n = 10) less than 8% were obtained for different arsenic concentrations and the accuracy was verified by analysing certified reference materials. Different kinds of samples, such as mineral water, drinking water, river water and natural spring water were analyzed and good agreement was obtained with the values from spiked experiments.  相似文献   

9.
A novel flow-injection chemiluminescence method for the determination of DNA at ultra-trace level has been established. In 0.8 M sulfuric acid media, the chemiluminescence of the rhodamine B-cerium (IV) or Ce(IV) system is enhanced by DNA, activated previously by imidazole-HCl buffer solution (pH 7.0). The enhanced intensity of chemiluminescence is in proportion to log DNA concentration 1.0×10−8 to 0.1 μg ml−1 for herring sperm DNA and 2.0×10−6 to 0.2 μg ml−1 for calf thymus DNA with 3σ detection limits of 8.3×10−9 μg ml−1 for herring sperm DNA and 3.5×10−7 μg ml−1 for calf thymus DNA, respectively. The relative standard deviation for 1.0×10−4 μg ml−1 herring sperm DNA was 0.99% and 2.0×10−3 μg ml−1 for calf thymus DNA was 1.1% (n=11). Using the optimized system, DNA contents in six synthetic samples has been determined with recoveries of 99.5-109.0%. The possible mechanism has also been studied in this paper.  相似文献   

10.
Although capillary electrophoresis (CE) with photometric detection is a well-established technique for the determination of various inorganic ions, its limited sensitivity has hindered greater development in this area. In this work, we used a mixture of metals consisting of Co(II), Ni(II), Zn(II) and Mn(II) to demonstrate that the sensitivity of CE with ultraviolet–visible (UV–vis) detection can be improved by using chromogenic reagents such as porphyrins. To this end, the metals were reacted with 5,10,15,20-tetrakis(4-sulphophenyl)-porphine dodecahydrate (TPPS4) to obtain their respective porphyrinato complexes, which were then separated by CE with a citrate buffer and detected at 410 nm. The ensuing electrophoretic method has a limit of detection (LOD) of 3 × 10−6 M (180 μg L−1) for Co(II), 2 × 10−10 M (0.012 μg L−1) for Ni(II), 4 × 10−6 M (260 μg L−1) for Zn(II) and 4 × 10−9 M (0.219 μg L−1) for Mn(II). The method is a highly promising choice for the ultratrace determination of Ni(II) and Mn(II).  相似文献   

11.
In this study, the steroid hormone levels in river and tap water samples were determined by using a novel dispersive liquid-liquid microextraction method based on the solidification of a floating organic drop (DLLME-SFO). Several parameters were optimized, including the type and volume of the extraction and dispersive solvents, extraction time, and salt effect. DLLME-SFO is a fast, cheap, and easy-to-use method for detecting trace levels of samples. Most importantly, this method uses less-toxic solvent. The correlation coefficient of the calibration curve was higher than 0.9991. The linear range was from 5 to 1000 μg L−1. The spiked environmental water samples were analyzed using DLLME-SFO. The relative recoveries ranged from 87% to 116% for river water (which was spiked with 4 μg L−1 for E1, 3 μg L−1 for E2, 4 μg L−1 for EE2 and 9 μg L−1 for E3) and 89% to 102% for tap water (which was spiked with 6 μg L−1 for E1, 5 μg L−1 for E2, 6 μg L−1 for EE2 and 10 μg L−1 for E3). The detection limits of the method ranged from 0.8 to 2.7 μg L−1 for spiked river water and 1.4 to 3.1 μg L−1 for spiked tap water. The methods precision ranged from 8% to 14% for spiked river water and 7% to 14% for spiked tap water.  相似文献   

12.
The consumption of ethanol is known to increase the likelihood of oral cancer. In addition, there has been a growing concern about possible association between long term use of ethanol-containing mouthwashes and oral cancer. Acetaldehyde, known to be a carcinogen, is the first metabolite of ethanol and it can be produced in the oral cavity after consumption or exposure to ethanol. This paper reports on the development of a gas-diffusion flow injection method for the online determination of salivary acetaldehyde by its colour reaction with 3-methyl-2-benzothiazolinone hydrazone (MBTH) and ferric chloride. Acetaldehyde samples and standards (80 μL) were injected into the donor stream containing NaCl from which acetaldehyde diffused through the hydrophobic Teflon membrane of the gas-diffusion cell into the acceptor stream containing the two reagents mentioned above. The resultant intense green coloured dye was monitored spectrophotometrically at 600 nm. Under the optimum working conditions the method is characterized by a sampling rate of 9 h−1, a linear calibration range of 0.5–15 mg L−1 (absorbance = 5.40 × 10−2 [acetaldehyde, mg L−1], R2 = 0.998), a relative standard deviation (RSD) of 1.90% (n = 10, acetaldehyde concentration of 2.5 mg L−1), and a limit of detection (LOD) of 12.3 μg L−1. The LOD and sampling rate of the proposed method are superior to those of the conventional gas chromatographic (GC) method (LOD = 93.0 μg L−1 and sampling rate = 4 h−1). The reliability of the proposed method was illustrated by the fact that spiked with acetaldehyde saliva samples yielded excellent recoveries (96.6–101.9%), comparable to those obtained by GC (96.4–102.3%) and there was no statistically significant difference at the 95% confidence level between the two methods when non-spiked saliva samples were analysed.  相似文献   

13.
A flow injection system with anion exchange resin minicolumns was coupled with dynamic reaction cell (DRC™) ICP-MS for the determination and speciation of selenite and selenate at sub μg L−1 levels. The charged selenate and uncharged selenite were separated on the first resin column in which only selenate was retained. The unretained selenite was then deprotonated with alkaline solution, and the resulting anionic selenite species was collected on the second column serially connected downstream. By setting a sample loop, total selenium can be determined together with selenite and selenate. The selenium species was eluted by nitric acid and carried to DRC™ ICP-MS for their detection. Using ammonia as reaction gas, the detection of 78Se was improved. The enrichment factor was 20 for 10 mL of sample. The standard deviations (n = 5) of peak heights were 4.9%, 4.1%, and 7.0% for a 5.0 × 10−2 μg L−1 selenite and selenate, and total Se, respectively. The calibration graphs were linear from 2.0 × 10−2 to 1.0 μg L−1 selenite and selenate. And, the linearity for total selenium was good in the range of 10.0 × 10−2 to 1.0 μg L−1. The proposed method has been demonstrated for the application to natural and bottled drinking water samples.  相似文献   

14.
Safavi A  Maleki N  Shahbaazi HR 《Talanta》2006,68(4):1113-1119
A sensitive method for the determination of chromium ion(VI) in complex matrices such as crude oil and sludge is presented based on the decreasing effect of Cr(VI) on cathodic adsorptive stripping peak height of Cu-adenine complex. Under the optimum experimental conditions (pH 7.5 Britton-Robinson buffer, 5 × 10−5 M copper, 8 × 10−6 M adenine and accumulation potential −250 mV versus Ag/AgCl), a linear decrease of the peak current of Cu-adenine was observed, when the chromium(VI) concentration was increased from 5 μg L−1 to 120 μg L−1. Detection limit of 2 μg L−1 was achieved for 120 s accumulation time. The relative standard deviations (R.S.D., %) were 1.8% and 4% for chromium(VI) concentrations of 18 μg L−1 and 100 μg L−1, respectively. The method was applied to the determination of chromium(VI) in the presence of high levels of chromium(III), in various real samples such as crude oil, crude oil tank button sludge, waste water and tap water samples. Effects of foreign ions and surfactants on the voltammetric peak and the influences of instrumental and analytical parameters were investigated in detail. The accuracy of the results was checked by ICP and/or AA.  相似文献   

15.
A method has been developed to determine acrylamide in aqueous matrices by using direct immersion solid-phase microextraction (SPME) coupled to gas chromatography-positive chemical ionization tandem mass spectrometry (GC-PCI-MS-MS) in the selected reaction monitoring (SRM) mode. The optimized SPME experimental procedures to extract acrylamide in water solutions were: use of a carbowax/divinylbenzene (CW/DVB)-coated fiber at pH 7, extraction time of 20 min and analyte desorption at 210 °C for 3 min. A detection limit of 0.1 μg L−1 was obtained. The linear range was 1-1000 μg L−1. The relative standard deviation was 10.64% (n = 7). The proposed analytical method was successfully used for the quantification of trace acrylamide in foodstuffs such as French fries (1.2 μg g−1) and potato crisps (2.2 μg g−1).  相似文献   

16.
An on-line solid phase extraction (SPE) preconcentration system coupled to flame atomic absorption spectrometer (FAAS) was developed for determination of copper and cadmium at μg L−1 level. The method is based on the on-line retention of copper and cadmium on a microcolumn of alumina modified with sodium dodecyl sulfate (SDS) and 1,10-phenanthroline and subsequent elution with ethanol and determination by FAAS. The effect of chemical and flow variables that could affect the performance of the system was investigated. The relative standard deviation (n = 6) at 20 μg L−1 level for copper and cadmium were 1.4 and 2.2% and the corresponding limits of detection (based on 3σ) were 0.04 and 0.14 μg L−1, respectively. The method was successfully applied to determination of copper and cadmium in human hair and water samples.  相似文献   

17.
Competitive electrochemical enzyme-linked immunosorbent assays based on disposable screen-printed electrodes have been developed for quantitative determination of ochratoxin A (OTA). The assays were carried out using monoclonal antibodies in the direct and indirect format. OTA working range, I50 and detection limits were 0.05-2.5 and 0.1-7.5 μg L−1, 0.35 (±0.04) μg L−1 and 0.9 (±0.1) μg L−1, 60 and 100 μg L−1 in the direct and indirect assay format, respectively. The immunosensor in the direct format was selected for the determination of OTA in wheat. Samples were extracted with aqueous acetonitrile and the extract analyzed directly by the assay without clean-up. The I50 in real samples was 0.2 μg L−1 corresponding to 1.6 μg/kg in the wheat sample with a detection limit of 0.4 μg/kg (calculated as blank signal −3σ). Within- and between-assay variability were less than 5 and 10%, respectively. A good correlation (r = 0.9992) was found by comparative analysis of naturally contaminated wheat samples using this assay and an HPLC/immunoaffinity clean-up method based on the AOAC Official Method 2000.03 for the determination of OTA in barley.  相似文献   

18.
A sensitive and robust analytical method for spectrophotometric determination of ethyl xanthate, CH3CH2OCS2 at trace concentrations in pulp solutions from froth flotation process is proposed. The analytical method is based on the decomposition of ethyl xanthate, EtX, with 2.0 mol L−1 HCl generating ethanol and carbon disulfide, CS2. A gas diffusion cell assures that only the volatile compounds diffuse through a PTFE membrane towards an acceptor stream of deionized water, thus avoiding the interferences of non-volatile compounds and suspended particles. The CS2 is selectively detected by UV absorbance at 206 nm (? = 65,000 L mol−1 cm−1). The measured absorbance is directly proportional to EtX concentration present in the sample solutions. The Beer's law is obeyed in a 1 × 10−6 to 2 × 10−4 mol L−1 concentration range of ethyl xanthate in the pulp with an excellent correlation coefficient (r = 0.999) and a detection limit of 3.1 × 10−7 mol L−1, corresponding to 38 μg L−1. At flow rates of 200 μL min−1 of the donor stream and 100 μL min−1 of the acceptor channel a sampling rate of 15 injections per hour could be achieved with RSD < 2.3% (n = 10, 300 μL injections of 1 × 10−5 mol L−1 EtX). Two practical applications demonstrate the versatility of the FIA method: (i) evaluation the free EtX concentration during a laboratory study of the EtX adsorption capacity on pulverized sulfide ore (pyrite) and (ii) monitoring of EtX at different stages (from starting load to washing effluents) of a flotation pilot plant processing a Cu-Zn sulfide ore.  相似文献   

19.
A multi-reversed flow system software-assisted was developed for improvement of sensitivity in flow analysis. The performance of the flow system proposed was evaluated by using as a model the conventional Griess’ colorimetric reaction for determination of nitrite in waters. The manifold incorporated three 3-way solenoid valves, a relay box solenoid actuated, a peristaltic pump, and a photometric detector. A tailored software was designed and written in Visual Basic 6.0 which allows full control of all flow system components and simultaneous acquisition and processing of the data. The sensitivity measured as the slope of the calibration curve was improved 2.5- and 1.4-fold regarding those obtained by continuous- and stopped-flow systems, respectively. Other valuable features such as analytical throughput of 55 determinations per hour, limit of detection of 5 μg L−1 (3σblank/slope), relative standard deviation < 2% (n = 8), and a linear dynamic range up to 1800 μg L−1 were also achieved.  相似文献   

20.
An analytical procedure with improved sensitivity was developed for cyanide determination in natural waters, exploiting the reaction with the complex of Cu(I) with 2,2′-biquinoline 4,4′-dicarboxylic acid (BCA). The flow system was based on the multi-pumping approach and long pathlength spectrophotometry with a flow cell based on a Teflon AF 2400® liquid core waveguide was exploited to increase sensitivity. A linear response was achieved from 5 to 200 μg L−1, with coefficient of variation of 1.5% (n = 10). The detection limit and the sampling rate were 2 μg L−1 (99.7% confidence level), and 22 h−1, respectively. Per determination, 48 ng of Cu(II), 5 μg of ascorbic acid and 0.9 μg of BCA were consumed. As high as 100 mg L−1 thiocyanate, nitrite or sulfite did not affect cyanide determination. Sulfide did not interfere at concentrations lower than 40 and 200 μg L−1 before or after sample pretreatment with hydrogen peroxide. The results for natural waters samples agreed with those obtained by a fluorimetric flow-based procedure at the 95% confidence level. The proposed procedure is then a reliable, fast and environmentally friendly alternative for cyanide determination in natural waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号