首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 596 毫秒
1.
2.
Acoustic waves in tissues and weakly attenuative fluids often have an attenuation parameter, alpha(omega), satisfying alpha(omega)= alpha0omegay in which alpha0 is a constant, omega is the frequency, and y is between 1 and 2. This power law attenuation is not predicted by the classical thermoviscous wave equation and researchers have proposed different modified viscous wave equations in which the loss term is a convolution operator or a fractional spatial or temporal derivative. In this paper, acoustic waves undergoing power law attenuation are modeled by a modification to the thermoviscous wave equation in which the time derivative of the viscous term is replaced by a fractional time derivative. An explicit time domain, finite element formulation leads to a stable algorithm capable of simulating axisymmetric, broadband acoustic pulses propagating through attenuative and dispersive media. The algorithm does not depend on the Born approximation, long wavelength limit, or plane wave assumptions. The algorithm is validated for planar and focused transducers and results include radiation patterns from a viscous scatterer in a lossless background and signals reflected from a viscous layer. The program can be used to determine scattering parameters for large, strong, possibly viscous scatterers, in either a lossless or viscous background, for which analytic results are scarce.  相似文献   

3.
4.
5.
Electric fields in non-local media with power-law spatial dispersion are discussed. Equations involving a fractional Laplacian in the Riesz form that describe the electric fields in such non-local media are studied. The generalizations of Coulomb’s law and Debye’s screening for power-law non-local media are characterized. We consider simple models with anomalous behavior of plasma-like media with power-law spatial dispersions. The suggested fractional differential models for these plasma-like media are discussed to describe non-local properties of power-law type.  相似文献   

6.
Heat pipe design and manufacturing require the knowledge of the thermal hydraulic performance of the wicks. The aim of the present work is the thermal hydraulic characterization of stainless steel wicks (sintered porous media and gauzes) to be employed in our experimental water heat pipe. Commercial sintered porous media (able to capture 90 % of 90 μm particles and 99.9 % of 130 μm particles) and gauzes (nominal wire size 0.11 mm, square mesh opening 0.209 mm) have been used. Thermal hydraulic characterization of the wicks is obtained through the experimental measurement of: capillary height (through which the equivalent porous radius can be evaluated), liquid hydraulic head (through which the liquid pressure drop in the wick is evaluated) wick permeability is also evaluated from the hydraulic head (through Darcy's law), heat flux, wick mass flow rate during the evaporation (through which, from the knowledge of other measured wick parameters, the wick two-phase pressure drop is calculated) and wick porosity (through which the thermal conductivity of the wick saturated with liquid can be determined). Concerning the heat flux, it is found to be dependent on the distance between the liquid level and the evaporating zone, the evaporating zone length, the wall superheat and the water subcooling, the contact between the heater and the wick and the superficial boundary conditions of the wick.  相似文献   

7.
The paper is devoted to the numerical simulation of a multiphase flow in porous medium with a hysteretic relation between the capillary pressures and the saturations of the phases. The flow model we use is based on Darcy's law. The hysteretic relation between the capillary pressures and the saturations is described by a play-type hysteresis operator. We propose a numerical algorithm for treating the arising system of equations, discuss finite element schemes and present simulation results for the case of two phases.  相似文献   

8.
反常扩散与分数阶对流-扩散方程   总被引:6,自引:0,他引:6       下载免费PDF全文
常福宣  陈进  黄薇 《物理学报》2005,54(3):1113-1117
反常扩散现象在自然界和社会系统中广泛存在.考虑了扩散过程的时间相关和时空相关性,用非局域性的处理方法,在传统的二阶对流 扩散方程基础上,得到了分数阶对流 扩散方程,以此方程来描述反常扩散.在此方程中,弥散项和对时间的导数为分数阶导数所代替.由此分数阶对流 扩散方程,对传统的费克扩散定律进行推广,得到了广义的分数费克扩散定律,分数费克扩散定律说明某时刻空间中某点的流量不仅与其领域内的浓度梯度有关,而且与整个空间中其他不同点的粒子浓度、浓度变化的历史,甚至初始时刻的浓度有关.讨论了方程的解——分数稳定分布,并由此说明了扩散运动的平均平方位移是运移时间的非线性函数. 关键词: 扩散 分数阶微积分 稳定分布(Lévy分布) 费克扩散定律  相似文献   

9.
Possible deviations from exponential attenuation of radiation in a random medium have been recently studied in several works. These deviations from the classical Beer–Lambert law were justified from a stochastic point of view by Kostinski (2001) [1]. In his model he introduced the spatial correlation among the random variables, i.e. a space memory. In this note we introduce a different approach, including a memory formalism in the classical Beer–Lambert law through fractional calculus modelling. We find a generalized Beer–Lambert law in which the exponential memoryless extinction is only a special case of non-exponential extinction solutions described by Mittag–Leffler functions. We also justify this result from a stochastic point of view, using the space fractional Poisson process. Moreover, we discuss some concrete advantages of this approach from an experimental point of view, giving an estimate of the deviation from exponential extinction law, varying the optical depth. This is also an interesting model to understand the meaning of fractional derivative as an instrument to transmit randomness of microscopic dynamics to the macroscopic scale.  相似文献   

10.
11.
Unsteady free convection flows of viscous fluids over a vertical circular cylinder are investigated by taking in consideration thermal and mass stratification and the thermal memory effects. The mathematical model of thermal transport is based on the fractional generalized Fourier's law for thermal flux with the kernel of power-law kind. In this model the histories of the temperature gradient influence the thermal and mass transport process and the fluid motion. On the cylinder's surface the temperature (or the thermal flux) and solute concentration are constant. Solutions in the transformed domain for the perturbation temperature and concentration and fluid velocity are determined using the Laplace transform coupled with the classical method for the ordinary non-homogeneous differential equations. The inverse Laplace transforms are obtained numerically by employing the Stehfest's algorithm. Solutions for the case corresponding to classical Fourier's law are obtained as particular case of general solutions by taking the memory parameter equal to zero. The influence of the thermal memory and of thermal and mass stratifications is numerically and graphically analyzed by using the software Mathcad 15.  相似文献   

12.
《Nuclear Physics B》1998,527(3):624-642
We re-examine three issues, the Hopf term, fractional spin and the soliton operators, in the 2+1 dimensional O(3) non-linear sigma model based on the adjoint orbit parametrization (AOP) introduced earlier. It is shown that the Hopf term is well defined for configurations of any soliton charge Q if we adopt a time-independent boundary condition at spatial infinity. We then develop the Hamiltonian formulation of the model in the AOP and thereby argue that the well-known Q2 formula for fractional spin holds only for a restricted class of configurations. Operators that create states of given classical configurations of any soliton number in the (physical) Hilbert space are constructed. Our results clarify some of the points that are crucial for the above three topological issues and yet have remained obscure in the literature.  相似文献   

13.
In this paper, we study wave interaction with an emerged porous media. The governing equation is shallow water equations with a friction term of the linearized Dupuit-Forcheimer's formula. From the continuity of surface and horizontal flux, we derived the wave reflection and transmission coefficient formulas. They are similar to the corresponding formulas of the submerged solid bar breakwater. We solve the equations numerically using finite volume method on a staggered grid. The numerical wave reduction in the porous media confirms the analytical wave transmission curve.  相似文献   

14.
Abby Tan   《Physica A》2006,370(2):689-696
The aim of this work is to take into account the effects of long memory in volatility on derivative hedging. This idea is an extension of the work by Fedotov and Tan [Stochastic long memory process in option pricing, Int. J. Theor. Appl. Finance 8 (2005) 381–392] where they incorporate long-memory stochastic volatility in option pricing and derive pricing bands for option values. The starting point is the stochastic Black–Scholes hedging strategy which involves volatility with a long-range dependence. The stochastic hedging strategy is the sum of its deterministic term that is classical Black–Scholes hedging strategy with a constant volatility and a random deviation term which describes the risk arising from the random volatility. Using the fact that stock price and volatility fluctuate on different time scales, we derive an asymptotic equation for this deviation in terms of the Green's function and the fractional Brownian motion. The solution to this equation allows us to find hedging confidence intervals.  相似文献   

15.
16.
17.
《Physica A》2006,362(1):168-173
Measurements in turbulent flows have revealed that the velocity field in nonequilibrium systems exhibits q-exponential or power-law distributions in agreement with theoretical arguments based on nonextensive statistical mechanics. Here we consider Hele–Shaw flow as simulated by the lattice Boltzmann method and find similar behavior from the analysis of velocity field measurements. For the transverse velocity, we obtain a spatial q-Gaussian profile and a power-law velocity distribution over all measured decades. To explain these results, we suggest theoretical arguments based on Darcy's law combined with the nonlinear advection–diffusion equation for the concentration field. Power-law and q-exponential distributions are the signature of nonequilibrium systems with long-range interactions and/or long-time correlations, and therefore provide insight to the mechanism of the onset of fingering processes.  相似文献   

18.
We use the fractional integrals in order to describe dynamical processes in the fractal medium. We consider the “fractional” continuous medium model for the fractal media and derive the fractional generalization of the equations of balance of mass density, momentum density, and internal energy. The fractional generalization of Navier-Stokes and Euler equations are considered. We derive the equilibrium equation for fractal media. The sound waves in the continuous medium model for fractional media are considered.  相似文献   

19.
20.
A volume averaging approach is used to estimate the porous media permeability. Contrary to traditional methods that rely on solving the Navier-Stokes equations for laminar flow, this approach has the advantage that it does not require the specification of some physical conditions and parameters (pressure drop and viscosity). Numerical results on synthetic models of porous media showed that (i) the local porous medium configuration has an important effect on the permeability value, and (ii) the Carman-Kozeny equation cannot describe the permeability behavior as a function of porosity and characteristic lengths. In turn, our results indicate that simple empirical equations, commonly used in practice, are unable to describe the permeability functionalities over a broad range of porous media configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号