首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 133 毫秒
1.
The pyrolysis behaviors of l-tyrosine-based phthalonitrile(TPN) resin were investigated by thermogravimetric-Fourier transform infrared spectrometry-mass spectrometry (TG-FTIR-MS) and Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The small molecules produced during pyrolysis process of TPN resin were tracked in real time by TG-FTIR-MS. The larger molecules (m/z > 40) from fast pyrolysis at 900 °C of the TPN resin using Py-GC/MS were identified. From TG-FTIR-MS and Py-GC/MS results, the production pathways of pyrolysis products such as CO2, CO, NH3, benzonitrile and phenol were analyzed. The possible pyrolysis mechanism of TPN resin under non-oxidizing gaseous environment was proposed. The results of this study provide the useful information for designing the molecular structure of l-tyrosine-based polymers which possessing high thermal stability.  相似文献   

2.
The effect of pyrolysis behavior on the ignition mechanism was investigated by thermogravimetric technique. The pyrolysis tests show that Datong bituminous coal (DT) pyrolyzes earlier and releases volatiles faster than does Guohua bituminous coal (GH). During oxy-fuel combustion, more volatiles accumulated around DT particles can be ignited easily with increasing oxygen concentration which results in the heterogeneous ignition transforming to homogeneous ignition, while for GH, less volatile is released during devolatilization and the coal particles are more likely ignited heterogeneously. After the transformation of ignition mechanism, the ignition temperature of DT decreases significantly, but the combustibility index S is not appreciably affected. The effect of pyrolysis characteristics on NO emissions was studied by a fixed-bed reactor. It is found that compared to GH, DT released NO more quickly and intensively which leads to more fuel-N converting to NO. With the rise in oxygen concentration, the NO yields of both coals reach the peak values at 40 % oxygen concentration and then decline mainly due to the enhanced homogeneous NO reductions at higher oxygen concentration. With the rise in furnace temperature, the NO yields of coal samples increase first and then decrease with a maximum at 900 °C which is possibly a result of the competing reactions of volatile-N oxidation and reduction in the process of NO formation.  相似文献   

3.
Emissions evolved from the pyrolysis and combustion of polyvinyl chloride (PVC) were studied at four different temperatures (500, 700, 850 and 1000 °C) in a horizontal laboratory tubular quartz reactor in order to analyse the influence of both temperature and reaction atmosphere on the final products from thermal and oxidative reactions. It was observed that the CO2/CO ratio increased with temperature. Methane was the only light hydrocarbon whose yield increased with temperature up to 1000 °C. Benzene was rather stable at high temperatures, but in general, combustion at temperatures above 500 °C was enough to destroy light hydrocarbons. Semivolatile hydrocarbons were collected in XAD-2 resin and more than 160 compounds were detected. Trends on polyaromatic hydrocarbon (PAH) yields showed that most had a maximum at 850 °C in pyrolysis, but naphthalene at 700 °C. Formation of chlorinated aromatics was detected. A detailed analysis of all isomers of chlorobenzenes and chlorophenols was performed. Both of them reached higher total yields in combustion runs, the first ones having a maximum at 700 °C and the latter at 500 °C. Pyrolysis and combustion runs at 850 °C were conducted to study the formation of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs). There was more than 20-fold increase in total yields from pyrolysis to combustion, and PCDF yields represented in each case about 10 times PCDD yields.  相似文献   

4.
Maize stalk was fast pyrolysed at temperatures between 420 °C and 580 °C in a fluidized-bed, and the main product of pyrolysis oil was obtained. The experimental results showed that the highest pyrolysis oil yield of 66 wt.% was obtained at 500 °C for maize stalk. Chemical composition of the pyrolysis oil acquired was analyzed by GC–MS and its heat value, stability, miscibility and corrosion characteristics were determined. These results showed that the pyrolysis oil could be directly used as a fuel oil for combustion in a boiler or a furnace without any upgrading. Alternatively, the fuel could be refined to be used by vehicles.  相似文献   

5.
The effects of pyrolysis temperature and heating rate on the porous structure characteristics of rice straw chars were investigated. The pyrolysis was done at atmospheric pressure and at temperatures ranging from 600 to 1000 °C under low heating rate (LHR) and high heating rates (HHR) conditions. The chars were characterized by ultimate analysis, field emission scanning electron microscope (FESEM), helium density measurement and N2 physisorption method. The results showed that temperature had obvious influence on the char porous characteristics. The char yield decreased by approximately 16% with increasing temperature from 600 to 1000 °C. The carbon structure shrinkage and pore narrowing occurred above 600 °C. The shrinkage of carbon skeleton increased by more than 22% with temperatures rising from 600 to 1000 °C. At HHR condition, progressive increases in porosity development with increasing pyrolysis temperature occurred, whereas a maximum porosity development appeared at 900 °C. The total surface area (Stotal) and micropore surface area (Smicro) reached maximum values of 30.94 and 21.81 m2/g at 900 °C and decreased slightly at higher temperatures. The influence of heating rate on Stotal and Smicro was less significant than that of pyrolysis temperature. The pore surface fractal dimension and average pore diameter showed a good linear relationship.  相似文献   

6.
A novel approach for transesterification of methyl pyrrole-carboxylate with alcohols is reported. The transformation is performed with t-BuOK and a series of new pyrrole ester were obtained under the optimized conditions. The odor characteristics of the pyrrolyl esters were evaluated by GC–MS-O (gas chromatography-mass spectrometry-olfactometry). Among them, compounds of 4-isopropylbenzyl 1H-pyrrole-2-carboxylate (3d) and naphthalen-2-ylmethyl 1H-pyrrole-2-carboxylate (3 l) present nuts and almond-like aroma, respectively. The Py-GC/MS (pyrolysis–gas chromatography/mass spectrometry) approach was applied to evaluate the pyrolysis intermediates of the pyrrole esters in oxidative conditions. It clarified that 3d and 3 l occurred different degrees of pyrolysis throughout the pyrolysis temperature from 30 °C to 900 °C. In addition, the TG (thermogravimetry) and DSC (differential scanning calorimeter) approaches were applied to investigate at the thermal degradation process. They have good thermal stability under certain temperature according to the results of TG analysis.  相似文献   

7.
SrSnO3 was synthesized by the polymeric precursor method with elimination of carbon in oxygen atmosphere at 250 °C for 24 h. The powder precursors were characterized by TG/DTA and high temperature X-ray diffraction (HTXRD). After calcination at 500, 600 and 700 °C for 2 h, samples were evaluated by X-ray diffraction (XRD), infrared spectroscopy (IR) and Rietveld refinement of the XRD patterns for samples calcined at 900, 1,000 and 1,100 °C. During thermal treatment of the powder precursor ester combustion was followed by carbonate decomposition and perovskite crystallization. No phase transition was observed as usually presented in literature for SrSnO3 that had only a rearrangement of SnO6 polyhedra.  相似文献   

8.
Modern methods of recycling organic waste are not considered viable today. Therefore, an important advantage of the proposed technology is to obtain mineral fuel products as an output. The technologies of high-temperature processing are based on thermal decomposition of waste without oxygen at high temperature. In pyrolysis, wastes are converted into gaseous, liquid and solid fuels. Thereby, the properties and composition of the liquid feedstock obtained by pyrolysis with a boiling temperature in the range of X.I. (38) - 180 °C, 180 - 320 °C and more than 320 °C were investigated. Residue with a boiling temperature over 320° C (52.4% vol.) is the main portion of the synthetic liquid fuels (SLF). It can be attributed to fuel oil grade 100 and used as boiler fuel or fuel oil additives according to the studied physicochemical parameters.  相似文献   

9.
The pyrolysis behavior of bitumen was investigated using a thermogravimetric analyzer–mass spectrometer system (TG–MS) and a differential scanning calorimeter (DSC) as well as a pyrolysis-gas chromatograph/mass spectrometer system (Py-GC/MS). TG results showed that there were three stages of weight loss during pyrolysis—less than 110, 110–380, and 380–600 °C. Using distributed activation energy model, the average activation energy of the thermal decomposition of bitumen was calculated at 79 kJ mol−1. The evolved gas from the pyrolysis showed that organic species, such as alkane and alkene fragments had a peak maximum temperature of 130 and 480 °C, respectively. Benzene, toluene, and styrene released at 100 and 420 °C. Most of the inorganic compounds, such as H2, H2S, COS, and SO2, released at about 380 °C while the CO2 had the maximum temperature peaks at 400 and 540 °C, respectively. FTIR spectra were taken of the residues of the different stages, and the results showed that the C–H bond intensity decreased dramatically at 380 °C. Py-GC/MS confirmed the composition of the evolved gas. The DSC revealed the endothermic nature of the bitumen pyrolysis.  相似文献   

10.
垃圾衍生燃料等温快速热解和燃烧反应特性   总被引:4,自引:4,他引:4  
利用热天平和管式炉对RDF(Refuse Derived Fuel)等温快速热解和燃烧反应特性进行了研究。实验发现,在等温快速升温的条件下,RDF热解和燃烧的反应速率都非常快,从受热开始到反应结束需60 s~80 s;从开始失重到完成反应为20 s。RDF热解和燃烧热重反应曲线非常类似,都只有一个反应失重区;RDF组成对其燃烧和热解反应性有重要影响,含有橡胶的RDF的热解和燃烧反应速率较小。在650 ℃~800 ℃RDF快速热解产物中气、液产物的产率可达80%~90%,而固体产物的产率只有10%~20%,热解气体的热值为20kJ/m3,RDF较适合进行热解处理。  相似文献   

11.

Mediterranean forest fires may be accelerated, partly due to biogenic volatile organic compounds produced by vegetation, mainly monoterpenes largely represented by α-pinene. To model the propagation of biomass combustion, it is necessary to study the flammability of the produced gas mixture, and thus, necessary to identify the emitted volatile compounds. However, thermal degradation of monoterpenes is rarely experimented above 300 °C, whereas forest fires reach higher temperatures. Thus, in this work, we experimented a 2-min pyrolysis of α-pinene at temperatures from 300 to 800 °C using a Py–GC/MS device. Less than 1% of pyrolysis products were detected at 300 and 400 °C. The pyrolysis products increased then from 14 compounds at 500 °C to 31 compounds at 800 °C. Degradation of α-pinene started with its isomerization at 500 °C. At 800 °C, alkenes detected increased as well as aromatics produced through the Diels–Alder mechanism. These results are consistent with the literature on thermal degradation of α- and β-pinene presented in our article.

  相似文献   

12.
垃圾衍生燃料流化床燃烧过程中HCl和NOx的排放研究   总被引:2,自引:0,他引:2  
在床总高为4040mm的变截面流化床中试规模装置内,研究垃圾衍生燃料(RDF)在气化和燃烧不同阶段中NOx和HCl的生成特性。含NaCl的垃圾衍生燃料在流化床内燃烧,燃烧低于640℃时,Ca(OH)2的脱氯效果比较好;但随着温度升高,烟气中HCl的体积分数迅速增长,但脱氯效果明显受到CaCl2化学反应平衡的限制。燃烧状况特别是氧的体积分数对NOx的生成影响比较大。含氮量高的RDF燃烧产生NOx的体积分数明显高于低含氮燃料所产生的。  相似文献   

13.
Rice husk was fast pyrolysed at temperatures between 420 °C and 540 °C in a fluidized bed, and the main product of bio-oil is obtained. The experimental result shows that the highest bio-oil yield of 56 wt% was obtained at 465 °C for rice husk. Chemical composition of bio-oil acquired was analyzed by GC–MS and its heat value, stability, miscibility and corrosion characteristics were determined. These results showed that bio-oil obtained can be directly used as a fuel oil for combustion in a boiler or a furnace without any upgrading. Alternatively, the fuel can be refined to be used by vehicles. Furthermore, the energy performance of the pyrolysis process was analyzed.  相似文献   

14.
Water-insoluble pyrolytic cellulose with similar appearance to pyrolytic lignin was found in cellulose fast pyrolysis oil. The influence of pyrolysis temperature on pyrolytic cellulose was studied in a temperature range of 300–600 °C. The yield of the pyrolytic cellulose increased with temperature rising. The pyrolytic cellulose was characterized by various methods. The molecular weight distribution of pyrolytic cellulose was analyzed by gel permeation chromatography (GPC). Four molecular weight ranges were observed, and the Mw of the pyrolytic cellulose varied from 3.4 × 103 to 1.93 × 105 g/mol. According to the elemental analysis (EA), the pyrolytic cellulose possessed higher carbon content and lower oxygen content than cellulose. Thermogravimetric analysis (TGA) indicated that the pyrolytic cellulose underwent thermo-degradation at 127–800 °C and three mass loss peaks were observed. Detected by the pyrolysis gas chromatography–mass spectrometry (Py-GC/MS), the main pyrolysis products of the pyrolytic cellulose included saccharides, ketones, acids, furans and others. Fourier transforms infrared spectroscopy (FTIR) also demonstrated that the pyrolytic cellulose had peaks assigned to CO stretching and glycosidic bond, which agreed well with the Py-GC/MS results. The pyrolytic cellulose could be a mixture of saccharides, ketones, and their derivatives.  相似文献   

15.
Thermal behavior of textile waste was studied by thermogravimetry at different heating rates and also by semi-batch pyrolysis. It was shown that the onset temperature of mass loss is within 104–156 °C and the final reaction temperature is within 423–500 °C. The average mass loss is 89.5%. There are three DTG peaks located at the temperature ranges of 135–309, 276–394 and 374–500 °C, respectively. The first two might be associated with either with decomposition of the hemicellulose and cellulose or with different processes of cellulose decomposition. The third peak is possibly associated to a synthetic polymer. At a temperature of 460 °C, the expected amount of volatiles of this waste is within 85–89%. The kinetic parameters of the individual degradation processes were determined by using a parallel model. Their dependence on the heating rate was also established. The pyrolysis rate is considered as the sum of the three reaction rates. The pyrolysis in a batch reactor at 700 °C and nitrogen flow of 60 ml/min produces 72 wt.% of oil, 13.5 wt.% of gas and 12.5 wt.% of char. The kinetic parameters of the first peak do not vary with heating rate, while those of the second and the third peak increase and decrease, respectively, with an increasing heating rate, proving the existence of complex reaction mechanisms for both cases.  相似文献   

16.
The pyrolysis behaviors of corn stalk and its three real components (i.e. hemicellulose, cellulose, and lignin) have been investigated with the techniques of TG-MS and Py-GC/MS. The thermal behavior and the evolution profiles of major volatile fragments from each sample pyrolysis have been discussed in depth, while paying close attention to the impact and contributions of each component on the raw material pyrolysis. It was found that pyrolysis of the corn stalk was a comprehensive reflection of its three main components both on thermogravimetric characteristics and on products distribution and their formation profiles. Hemicellulose definitely made the greatest contribution to the formation of acids and ketones at around 300 °C. Cellulose was more dedicated to the products of furans and small molecule aldehydes in a short temperature range 320–410 °C. While lignin mainly contributed to produce phenols and heterocyclic compounds over a wider temperature range 240–550 °C. The experimental results obtained in the present work are of interest for further studies on selective fast pyrolysis of biomass into energy and chemicals.  相似文献   

17.
Two analytical procedures based on gas chromatography and mass spectrometry were used to study the compositions of a wild population and a selected clone (Torviscosa) of giant reed (Arundo donax L.), one of the most promising biomass both in terms of energy and fine chemicals production. Gas chromatography/mass spectrometry (GC/MS) was used to characterize and quantitatively determine the monosaccharide composition. Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), using hexamethyldisilazane (HMDS) as a derivatising agent, was used to characterize the lignocellulosic polymers. Analytical pyrolysis was also used to study the composition of residues left after the catalytic hydrolysis used to convert cellulose to levulinic acid and hemicellulose to furfural.GC/MS allowed us to determine the monosaccharide composition and polysaccharide content of the giant reed samples, highlighting that there was no significant difference between the wild population and the selected clone. GC/MS also highlighted that the giant reed leaves have a higher percentage (roughly 60%) of polysaccharide material than the stalks, which contain approximately 50%.Py-GC/MS, following the disappearance of the pyrolysis products of polysaccharides, showed that 150 °C and 190 °C are the best temperatures to obtain the complete catalytic conversion of hemicellulose and cellulose, respectively. Analytical pyrolysis also highlighted that in the course of catalytic hydrothermal conversion a partial depolymerisation of lignin was obtained. In particular, the formation of lignin units containing free phenol groups via the cleavage of the β-aryl ether bonds was demonstrated. The presence of these free phenols in the lignin network suggests the possible exploitation of lignin residues as antioxidant components or in high value biopolymer industries rather than the traditional use as low-value fuel for energy production.  相似文献   

18.
Structural evolution of turbostratic carbon samples as a function of annealing temperature has been investigated in detail using small angle X-ray scattering (SAXS), solid state nuclear magnetic resonance (NMR) and Raman spectroscopic techniques. From these studies, it is established that, samples heated at lower temperatures (700 °C and 800 °C) consist carbon particles with rough surfaces forming structure of surface fractal in nature. Whereas the sample heated at higher temperature (900 °C) consists of larger clusters with nearly smooth surface as well as smaller size particles forming dense mass fractal structure. For this sample, solid state NMR and Raman Spectroscopic studies indicate an increased extent of overlapping of 2pz orbital of carbon atoms due to improved long range ordering and clustering. Hydrogen adsorption studies further substantiated that energetically more homogeneous surface exists for particles of 900 °C heated sample as compared to those of 700 °C and 800 °C heated samples. A highest hydrogen storage capacity of 0.152 H/M has been observed at 123 K and 45 bar pressure for the sample heated at 900 °C.  相似文献   

19.
In this paper, novel low-cost oxygen carriers containing Fe2O3 are evaluated for use in chemical looping combustion. Sewage sludge ashes and reference samples were prepared and used in cyclic reduction and oxidation experiments in a thermogravimetric analyzer (TG). A gaseous (3 % H2) fuel and a solid fuel (hard coal) were tested. Three-cycle CLC tests were carried out in the 600–800 °C temperature range and long-term testing was performed at 950 °C. A reactivity study showed that the natural sewage sludge ash sample was stable during the cycling TG tests when hydrogen was used as a fuel at all of the temperatures investigated. Strong temperature effects on the oxygen transport capacity were observed. An one-cycle test at 900 °C showed also that the sewage sludge ash successfully reacted with coal. The oxygen released was fully used for coal combustion, with appreciable reaction rate at temperature of ~750–800 °C, that is significantly lower than that obtained for pure Fe2O3-based oxygen carrier. The oxidation reaction was much faster than the reduction reaction. Moreover, the sewage sludge ash showed a low tendency toward agglomeration in the cyclic test, which was superior to the behavior of synthetic materials. The sewage sludge ash exhibited also high mechanical strength, an attrition index of 1 % and a high-temperature resistance of 1,170 °C in a reducing atmosphere. We conclude that sewage sludge ash can be effectively used as a low-cost, valuable oxygen carrier in practical application in chemical looping combustion technology for power generation.  相似文献   

20.
A study is undertaken to assess the effectiveness of lignin extracted from prairie cordgrass as a pyrolysis feedstock. The effects of variability of lignin source on fast and slow pyrolysis products are also investigated. To accomplish these goals, Py-GC/MS and TGA/FTIR are employed in the pyrolysis of three types of lignin: prairie cordgrass (PCG) lignin extracted from prairie cordgrass, aspen lignin extracted from aspen trees (hardwood), and synthetic Kraft lignin. Fast pyrolysis results from Py-GC/MS show that for PCG lignin, only ten of the detected compounds have relative peak area percentiles that exceed 2% and make up over 52% of the total area. For aspen lignin, excluding butanol that is used in the extraction process, only eight compounds are found to have relative peak areas exceeding 2% that make up over 52% of the total area. For Kraft lignin, only eight compounds exceeding 2% are found to make up more than 45% of the total area. Both techniques, Py-GC/MS and TGA/FTIR, indicate that PCG lignin releases more alkyls than aspen and Kraft lignin. TGA/FTIR results indicate that PCG lignin also releases by far the most light volatile products (<200 °C) while producing the least amount of char among the three types of lignin studied. These characteristics make PCG lignin a good choice in producing good quality bio-oil and thus decreasing upgrade requirements. Py-GC/MS results conclude that aspen lignin produces significantly more pyrolytic products than PCG lignin. This is indicative of the potential of aspen lignin to result in higher conversion rates of bio-oil than the other two lignins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号