首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A flat plate experiment was performed in a water tunnel to determine the effects of a vortex generator jet on the characteristics of a turbulent boundary layer at various wall normal locations. The results show that the characteristic distributions of the turbulent fluctuation quantities are nearly unaffected by the induced vortex structures neither in the steady nor in the dynamic blowing case. The shear layer interaction between the turbulent main flow and the jet flow produces less turbulent fluctuations than it is expected from a turbulent free jet flow. Thus, the mixing process of this flow control strategy is based only on a large-scale momentum transport superimposed by the turbulent fluctuation quantities. This allows a separation of scales for physical interpretation and numerical simulations.  相似文献   

2.
Large-scale vortical structures and associated mixing in methane/air swirling coaxial jets are actively controlled by manipulating the outer shear layer of the outer swirling coaxial jet with miniature flap actuators. In order to investigate the control mechanisms, stereoscopic particle image verocimetry (stereo-PIV) and plannar laser-induced fluorescence (PLIF) techniques are employed. It is found that intense vortex rings are produced in the outer shear layer in phase with the periodic flap motion regardless of the swirl number examined. The vortical structures in the inner shear layer, however, are strongly dependent on the swirl rate. This is because the central methane jet is accelerated by the negative axial pressure gradient, of which strength is determined by the swirl. As a result, the inner vortex formation is significantly suppressed at a higher swirl rate. On the other hand, at a relatively low swirl rate, the inner vortices are shed continuously and the methane jet is pinched off. This particular mode promotes the mixing of methane and air, so that the flammable mixture can be formed at an earlier stage of the jet flow development. In addition, the evolution of secondary streamwise vortices is prompted by the combination of the periodic vortex ring shedding and the swirl. They also contribute to the mixing enhancement in the downstream region.  相似文献   

3.
This paper describes a combined experimental and numerical study of scalar transport in spatially developing, two-stream, turbulent mixing layers with velocity ratios of approximately 2:1. The experimental mixing layer was created by an S-shaped splitter plate mounted in a wind tunnel, and the concentration field was realized by releasing incense smoke into the high-speed side boundary layer above the splitter plate. Simultaneous measurements of the velocity and concentration fields were performed. A 12-sensor hot-wire probe was used to measure the velocity field and its gradients, while the concentration field was recorded with digital photographs of the laser-illuminated smoke. In parallel, a large-eddy simulation (LES) of the spatially developing mixing layer was carried out. Auxiliary turbulent boundary layer LES were used to provide high quality inflow boundary conditions for the velocity and concentration fields. By synchronizing the velocity and concentration measurements, concentration fluxes were also determined. Octant analysis based on the sign combinations of the velocity and concentration fuctuations was performed on the flux data to investigate the scalar transport processes. It was found that octants compatible with mean gradient transport of the scalar contribute most to the scalar fluxes. Conditional planar averages of scalar and momentum fluxes were obtained to determine their spatial distribution with respect to the organized roller and rib vortices of the mixing layer, and distinct patterns were observed. The simulation provided additional insight about the flow and scalar flux distribution topology. This topology was found to be partially compatible with simple models of roller and rib vortices that transport the scalar in a mean gradient sense.  相似文献   

4.
Topological features of the flow emanating from a radial jet nozzle and its subsequent reattachment on a flat surface were investigated using a variety of flow visualization techniques in the Texas A & M University (TAMU) water tunnel. Dominant features of the flow were observed to be the bifurcation of streamsurface after a turbulent reattachment into inner and outer flows. The inner flow was dominated by a sequence of events consisting of the recirculation, formation and breakup of the ring vortex into foci structures, mass entrainment and ejection. Outer flow exhibited formation of secondary vortices, and shear layer instabilities.  相似文献   

5.
 The mean velocity field of a 30° inclined wall jet has been investigated using both hot-wire and laser Doppler anemometry (LDA). Provided that the nozzle aspect ratio is greater than 30 and the inclined wall angle (β) is less than 50°, LDA measurements for various β show that the reattachment length is independent of the nozzle aspect ratio and the nozzle exit Reynolds number (in the range 6670–13,340). There is general agreement between the reattachment lengths determined by LDA and those determined using wall surface oil film visualisation technique. The role of coherent structures arising from initial instabilities of a 30° wall jet has been explored by hot-wire spectra measurements. Results indicate that the fundamental vortex roll-up frequency in both the inner and outer shear layer corresponds to a Strouhal number (based on nozzle exit momentum thickness and velocity) of 0.012. The spatial development of instabilities in the jet has been studied by introducing acoustic excitation at a frequency corresponding to the shear layer mode. The formation of the fundamental and its first subharmonic has been identified in the outer shear layer. However, the development of the first subharmonic in the inner shear layer has been severely suppressed. Distributions of mean velocities, turbulence intensities and Reynolds shear stress indicate that controlled acoustic excitation enhances the development of instabilities and promotes jet reattachment to the wall, resulting in a substantially reduced recirculation flow region. Received: 24 November 1998/Accepted: 24 August 1999  相似文献   

6.
Influences of the inlet swirl levels on the interaction between the dilution air jets and the swirling cross‐flow to the interior flow field inside a gas turbine combustor were investigated numerically by Reynolds stress transport model (RSTM). Due to the intense swirl and jet interaction, a high level of swirl momentum is transported to the centreline and hence, an intense vortex core is formed. The strength of the centreline vortex core was found to depend on the inlet swirl levels. For the higher swirling inlet, the decay of the swirling motion causes strong streamline variation of pressure; and consequently leads to an elevated level of deceleration of its axial velocity. Predictions contrasted with measurements indicate that the stress model reproduces the flow correctly and is able to reflect the influences of inlet swirl levels on the interior flow structure. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
The present work describes the experimental investigation of reacting wakes established through fuel injection and staged premixing with air in an axisymmetric double cavity arrangement, formed along three concentric disks, and stabilized in the downstream vortex region of the afterbody. The burner assembly is operated with a co-flow of swirling air, aerodynamically introduced upstream of the burner exit plane, to allow for the study of the interaction between the resulting partially premixed recirculating afterbody flames with the surrounding swirl. At low swirl the primary afterbody disk stabilizes the partially premixed annular jet in the downstream reacting wake formation region. As swirl increases, a system of two successive vortices emerges along the axis of the developing wake; the primary afterbody vortex is cooperating with an adjacent, swirl induced, central recirculation zone and this combination further promotes turbulent mixing in the hot wake.Complementary measurements of the counterpart isothermal turbulent velocity fields provided important information on the near wake aerodynamics under the interaction of the variable swirl and the double cavity produced annular jet stabilized by the afterbody. Under reacting conditions, measurements of turbulent velocities, temperatures and statistics together with an evaluation of the exhaust emissions were performed using LDV, thin digitally-compensated thermocouples and gas analyzers. A selected number of lean and ultra-lean flames were investigated by regulating the injected fuel and the air supply ratio, while the influence of the variation of the imposed swirl on wake development, flame characteristics and emission performance was documented for constant fuel injections. The differences and similarities between the present partially premixed stabilizer and other types of axisymmetric configurations are also highlighted and discussed.  相似文献   

8.
The low swirl flow is a novel method for stabilizing lean premixed combustion to achieve low emissions of nitrogen oxides. Understanding the characteristics of low swirl flows is of both practical and fundamental interest. In this paper, in order to gain better insight into low swirl stabilized combustion, large eddy simulation and dynamically thickened flame combustion modeling are used to characterize various features of non-reacting and reacting low swirl flows including vortex breakdown, shear layers’ instability, and coherent structures. Furthermore, four test cases with different equivalence ratios are studied to evaluate the effects of equivalence ratio on the flame and flow characteristics. A finite volume scheme on a Cartesian grid with a dynamic one equation eddy viscosity subgrid model is used for large eddy simulations. The obtained results show that the combustion heat release and increase in equivalence ratio toward the stoichiometric value decrease the local swirl number of the flow field, while increasing the flow spreading at the burner outlet. Results show that the flame becomes W shaped as the equivalence ratio increases. Moreover, the combination of the swirling motion and combustion heat release temporally imposes a vortex breakdown in the post-flame region, which leads to occurrence of a transient recirculation zone. The temporal recirculation zone disappears downstream of the burner outlet due to merging of the inner shear layer from all sides at the centerline. Also, various analyses of shear layers’ wavy and vortical structures show that combustion heat release has the effect of decreasing the instability amplitude and vortex shedding frequency.  相似文献   

9.
Numerical investigation of a perturbed swirling annular two-phase jet   总被引:1,自引:0,他引:1  
A swirling annular gas–liquid two-phase jet flow system has been investigated by solving the compressible, time-dependent, non-dimensional Navier–Stokes equations using highly accurate numerical methods. The mathematical formulation for the flow system is based on an Eulerian approach with mixed-fluid treatment while an adjusted volume of fluid method is utilised to account for the gas compressibility. Surface tension effects are captured by a continuum surface force model. Swirling motion is applied at the inlet while a small helical perturbation is also applied to initiate the instability. Three-dimensional spatial direct numerical simulation has been performed with parallelisation of the code based on domain decomposition. The results show that the flow is characterised by a geometrical recirculation zone adjacent to the nozzle exit and by a central recirculation zone further downstream. Swirl enhances the flow instability and vorticity and promotes liquid dispersion in the cross-streamwise directions. A dynamic precessing vortex core is developed demonstrating that the growth of such a vortex in annular configurations can be initiated even at low swirl numbers, in agreement with experimental findings. Analysis of the averaged results revealed the existence of a geometrical recirculation zone and a swirl induced central recirculation zone in the flow field.  相似文献   

10.
A Reynolds-averaged simulation based on the vortex-in-cell (VIC) and the transport equation for the probability density function (PDF) of a scalar has been developed to predict the passive scalar field in a two-dimensional spatially growing mixing layer. The VIC computes the instantaneous velocity and vorticity fields. Then the mean-flow properties, i.e. the mean velocity, the root-mean-square (rms) longitudinal and lateral velocity fluctuations, the Reynolds shear stress, and the rms vorticity fluctuations are computed and used as input to the PDF equation. The PDF transport equation is solved using the Monte Carlo technique. The convection term uses the mean velocities from the VIC. The turbulent diffusion term is modeled using the gradient transport model, in which the eddy diffusivity, computed via the Boussinesq's postulate, uses the Reynolds shear stress and gradients of mean velocities from the VIC. The molecular mixing term is closed by the modified Curl model.

The computational results were compared with two-dimensional experimental results for passive scalar. The predicted turbulent flow characteristics, i.e. mean velocity and rms longitudinal fluctuations in the self-preserving region, show good agreement with the experimental measurements. The profiles of the mean scalar and the rms scalar fluctuations are also in reasonable agreement with the experimental measurements. Comparison between the mean scalar and the mean velocity profiles shows that the scalar mixing region extends further into the free stream than does the momentum mixing region, indicating enhanced transport of scalar over momentum. The rms scalar profiles exhibit an asymmetry relative to the concentration centerline, and indicate that the fluid on the high-speed side mixes at a faster rate than the fluid on the low-speed side. The asymmetry is due to the asymmetry in the mixing frequency cross-stream profiles. Also, the PDFs have peaks biased toward the high-speed side.  相似文献   

11.
The paper reports on particle image velocimetry (PIV) measurements in turbulent slot jets bounded by two solid walls with the separation distance smaller than the jet width (5–40%). In the far-field such jets are known to manifest features of quasi-two dimensional, two component turbulence. Stereoscopic and tomographic PIV systems were used to analyse local flows. Proper orthogonal decomposition (POD) was applied to extract coherent modes of the velocity fluctuations. The measurements were performed both in the initial region close to the nozzle exit and in the far fields of the developed turbulent slot jets for Re  10,000. A POD analysis in the initial region indicates a correlation between quasi-2D vortices rolled-up in the shear layer and local flows in cross-stream planes. While the near-field turbulence shows full 3D features, the wall-normal velocity fluctuations day out gradually due to strong wall-damping resulting in an almost two-component turbulence. On the other hand, the longitudinal vortex rolls take over to act as the main agents in wall-normal and spanwise mixing and momentum transfer. The quantitative analysis indicates that the jet meandering amplitude was aperiodically modulated when arrangement of the large-scale quasi-2D vortices changed between asymmetric and symmetric pattern relatively to the jet axis. The paper shows that the dynamics of turbulent slot jets are more complex than those of 2D, plane and rectangular 3D jets. In particular, the detected secondary longitudinal vortex filaments and meandering modulation is expected to be important for turbulent transport and mixing in slot jets. This issue requires further investigations.  相似文献   

12.
This paper presents a discussion of the results and conclusions drawn from a series of experiments conducted to investigate the swirl flow that are generated by a three lobed helical pipe mounted within a laboratory scale pneumatic conveying rig. The experiments employed Laser Doppler Anemometry (LDA) to quantify the strength of the induced vortex formations and the decay rates of the observed downstream swirl flows over a range of Reynolds number in the turbulent regime. Instantaneous point velocity measurements were resolved in three directions across regular measurement grids transcribed across parallel planes located at four distances downstream of the swirl inducing pipe section. The equivalent axial, radial and tangential velocities were subsequently computed at these grids points. The degree of swirl measured across each measurement plane was expressed in terms of a defined swirl number.It was concluded that the three lobed helical pipe gave rise to a wall jet type of swirl whose rate of observed downstream decay is related to the Reynolds number of the upstream flow and the distance downstream of the swirl pipe. The decay rates for the swirl flows were found to be inversely proportional to the Reynolds number of the upstream flow. The swirl pipe was observed to create a redistribution of the downstream velocity field from axial to tangential, accompanied by a transfer of axial to angular momentum. The findings of this paper are believed to improve understanding to assist the selective use of swirl flow within lean phase particles pneumatic transport systems.  相似文献   

13.
Experimental characterization of non-premixed turbulent jet propane flames   总被引:1,自引:0,他引:1  
This paper reports an experimental study conducted on turbulent jet propane flames aiming at further understanding of turbulent structure in non-premixed slow-chemistry combustion systems. Measurements of mean and fluctuating velocity and temperature fields, mean concentration of major chemical species, correlation between velocity and temperature fluctuations, and dissipation of temperature fluctuations are reported in a turbulent round jet non-premixed propane flame, Re=20 400 and 37 600, issuing vertically in still air. The experimental conditions were designed to provide a complete definition of the upstream boundary conditions in the measurement domain for the purpose of validating computational models. The measured data depicts useful flow field information for describing turbulent non-premixed slow-chemistry flames. Velocity–temperature correlation measurements show turbulent heat fluxes tended to be restricted to the mixing layer where large temperature gradients occurred. Observations of non-gradient diffusion of heat at x/D=10 were verified. Temperature fluctuation dissipation, χ, showed the highest values in the shear layer, where the variance of temperature fluctuations was maximum and combustion occurred. The isotropy between the temperature dissipation in the radial and tangential directions was confirmed. By contrast, the observed anisotropy between axial and radial directions of dissipation suggests the influence of large structures in the entrainment shear layer on the production of temperature fluctuations in the flame region. The value of the normalized scalar dissipation at the stoichiometric mixture fraction surface, χst, was calculated, and ranges between 2 and 4 s−1. The measured data were used to estimate the budgets in the balance equations for turbulent kinetic energy, Reynolds shear stresses, turbulent heat flux and temperature variance, quantifying the mechanisms involved in the generation of turbulence as well as in the transport of the temperature.  相似文献   

14.
This paper performs large eddy simulations (LES) to investigate coherent structures in the flows after the Sydney bluff-body burner, a circular bluff body with an orifice at its center. The simulations are validated by comparison to existing experimental data. The Q function method is used to visualize the instantaneous vortex structures. Three kinds of structures are found, a cylindrical shell structure in the outer shear layer, a ring structure and some hairpin-like structures in the inner shear layer. An eduction scheme is employed to investigate the coherent structures in this flow. Some large streaks constituted by counter-rotating vortices are found in the outer shear layer and some well-organized strong structures are found in the inner shear layer. Finally, the influences of coherent structures on scalar mixing are studied and it is shown that scalar in the recirculation region is transported outward by coherent structures.  相似文献   

15.
The effects of swirl and downstream wall confinement on an annular nonpremixed flame were investigated using direct numerical simulation (DNS). Fully three-dimensional parallel DNS was performed employing high-order numerical methods and high-fidelity boundary conditions to solve governing equations for variable-density flow and finite-rate Arrhenius chemistry. Three swirl numbers have been examined: 0 (without swirl), 0.4 and 0.8, while the effects of downstream wall confinement have been examined for swirl numbers 0 and 0.4. Results have been presented in terms of instantaneous and time-averaged flow quantities, which have also been analysed using energy spectra and proper orthogonal decomposition (POD). Effects of swirl on the fluid dynamic behaviour of the annular nonpremixed flame were found to be significant. The fluid dynamic behaviour of the flame is greatly affected by the interaction between the geometrical recirculation zone (GRZ) near the jet nozzle exit due to the annular configuration, the central recirculation zone (CRZ) associated with swirl, the unsteady vortical structures in the jet column due to the shear instability, and the downstream wall confinement. Depending on the degree of swirl, the GRZ near the burner mouth and the CRZ may co-exist or one zone may be overwhelmed by another. At a moderate swirl number, the co-existence leads to a flame with strong reaction attached to the burner mouth; while at a high swirl number, the CRZ dominates over the GRZ. The precessing vortex core was observed to exist in the swirling flow fields. The Nusselt number distribution of the annular impinging flames differs from that of round impinging jets. The POD analysis revealed that wall effects on the flow field are mainly associated with the higher mode numbers.  相似文献   

16.
Mixing characteristics and coherent structures populating the near-nozzle area of a rotating-pipe jet at the Reynolds number of 5300 were studied by Large-eddy simulation (LES). The swirl rate, defined as the ratio of the tangential velocity of the inner pipe wall to the bulk axial velocity, varied from 0 to 1, corresponding to a weak-to-moderate swirl intensity, insufficient to induce reverse flow near the nozzle. The visualization shows that for the non-swirling jet the near-wall streaky structures generated in the pipe interact with the shear layer, evolving into hairpin-like structures that become tilted at low rotation rates. For higher swirl, they cannot be recognized as they are destroyed at the nozzle exit. No large-scale coherent structures akin to Kelvin–Helmholtz vortical rings in the ‘top-hat’ jets are identifiable close to the nozzle. Using the single and joint probability density functions of velocity and passive scalar (temperature) fields we quantify the events responsible for the intensive entrainment at various swirl numbers. The isosurface of the temperature field indicates the meandering and precessing motion of the rotating jet core at the axial distance of 6D downstream, where D is the diameter of the pipe. The Fourier analysis with respect to the azimuthal angle and time reveals an interplay between the co- and counter-rotating modes. These findings explain the previously detected but not fully clarified phenomenon of the weakly counter-rotating jet core at low swirl rates.  相似文献   

17.
The turbulence modeling in probability density function (PDF) methods is studied through applications to turbulent swirling and nonswirling co-axial jets and to the temporal shear layer. The PDF models are formulated at the level of either the joint PDF of velocity and turbulent frequency or the joint PDF of velocity, wave vector, and turbulent frequency. The methodology of wave vector models (WVMs) is based on an exact representation of rapidly distorted homogeneous turbulence, and several models are constructed in a previous paper [1]. A revision to a previously presented conditional-mean turbulent frequency model [2] is constructed to improve the numerical implementation of the model for inhomogeneous turbulent flows. A pressure transport model is also implemented in conjunction with several velocity models. The complete model yields good comparisons with available experimental data for a low swirl case. The individual models are also assessed in terms of their significance to an accurate solution of the co-axial jets, and a comparison is made to a similar assessment for the temporal shear layer. The crucial factor in determining the quality of the co-axial jet simulations is demonstrated to be the proper specification of a parameter ratio in the modeled source of turbulent frequency. The parameter specification is also shown to be significant in the temporal shear layer.  相似文献   

18.
Subharmonic-perturbed shear flow downstream of a two-dimensional backward-facing step was experimentally investigated. The Reynolds number was Reh = 2.0 ×104, based on free-stream velocity and step height. Planar 2D-2C particle image velocimetry was employed to measure the separating and reattaching flow in the horizontal-vertical plane in the center position. The subharmonic perturbations were generated by an oscillating flap which was implemented over the step edge and driven by periodic Ampere force. The subharmonic frequency was 55 Hz as the half of the fundamental frequency of the turbulent shear layer. As a result of the subharmonic perturbations, the size of recirculation region behind the backward-facing step is reduced and the time-averaged reattachment length is 31.0% shorter than that of the natural flow. The evolution of vortices, including vortex roll-up, growth and breakdown process, is analyzed by using phase-averaging, cross-correlation function and proper orthogonal decomposition. It is found that Reynolds shear stress is considerably increased in which the vortices roll up and then break down further downstream. In particular, rapid growth of vortices based on the “step mode” occurs at approximate half of the recirculation region, caused by in interaction between the shear layer and the recirculation region. Furthermore, the coherent structures, which are represented by a phase-correlated POD mode pair, are reconstructed in phases in order to show regular patterns of the subharmonic-perturbed coherent structures.  相似文献   

19.
成璐  姜楠 《实验力学》2015,30(1):51-58
运用高时间分辨率粒子图像测速(Time-resolved PIV简称TRPIV),测量得到平板湍流边界层流向/法向平面内瞬时速度矢量空间分布的时间序列;采用空间局部平均速度结构函数的概念,识别和提取湍流边界层中大尺度发卡涡包结构的空间特征。发现在湍流边界层中不同法向位置多个正负发卡涡包结构同时交替存在。这些分布在不同法向高度的发卡涡包结构之间通过倾斜的涡量剪切层相联系,构成了湍流边界层中内、外区紧密相连、相互作用的一种稳态的分布方式。  相似文献   

20.
The results of an experimental investigation depicting the effects of swirl profile on confined flows in a sudden-expansion coaxial dump combustor are presented. Three swirlers (free vortex, forced vortex, and constant angle) with the same nominal swirl number were designed and fabricated to study the effects of swirl type on the isothermal dump combustor flow field. Imparting swirl to the inlet flow resulted in a considerable reduction of the corner recirculation length, a marked increase in turbulent mixing activity, and in one case creation of a central recirculation zone. This article highlights the importance of the combustor inlet swirl profile and shows that swirl type as well as swirl strength can affect the flow field significantly. The present database is well suited for numerical codes development and validation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号