首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 65 毫秒
1.
Compatibility of natural fiber with hydrophobic matrix is a herculean task in literature works. Surface treatment is a well-known approach for increasing the strength of interfacial adhesion between fibres and polymer matrices. Therefore, this study aims to examine the impact of surface treatment with zinc oxide nanoparticles (ZnONPs) in improving hydrophobicity of kenaf fiber (KF) to enhance the compatibility between KF and polymer matrix. In this study, KF reinforced unsaturated polyester composites (KF/UPE) were fabricated by the hand lay-up method with varying fiber loadings (wt %) of 10 20, 30, and 40. KF were treated with five different contents of ZnONPs (1% to 5 wt%) to make UPE/KF-ZnONPs composites. The composites were studied in terms of wetting response (contact angle measure and water absorption), mechanical properties, chemical structure (FTIR), crystalline structure (XRD), and surface morphology (SEM, AFM). The investigational findings indicate that the composite samples incorporating ZnONPs exhibit optimum hydrophobicity and mechanical properties, as they possessed a higher contact angle than the untreated KF composite. The optimum content of ZnONPs was found to be 2 wt%. Regarding water absorption, the untreated UPE/KF composites absorbed more water than the treated UPE/KF-ZnONPs composites. SEM images showed changes in the morphology of the KF, while FTIR analysis proved the presence of ZnONPs functional groups in the UPE/KF composites. AFM images revealed that the ZnONPs could actively produce nanolevel roughness, advantageous to the hydrophobic characteristics.  相似文献   

2.
以芝麻秸秆粉、水稻秸秆粉、玉米芯秆粉、菠萝叶粉、甘蔗渣粉五种不同植物纤维粉为填充体、不饱和聚酯树脂(UPR)为基体制作植物纤维粉/UPR复合材料,对比研究了秸秆种类对复合材料密度、力学性能及吸水性能的影响。结果表明,植物纤维粉粒径为100目、添加量为UPR用量的10%时,芝麻秸秆粉/UPR复合材料的综合力学性能最好,拉伸强度、弯曲强度和冲击强度分别为41.320 MPa、67.467 MPa和2.815 KJ/m^2,且每一浸泡阶段吸水率均最低。  相似文献   

3.
Environmental and societal concerns such as pollution, disposal of solid waste, requirement of different conflicting properties for materials in varied applications and cost are the main reasons for the development of new materials from the existing materials. The concerns may possibly be overcome by substituting natural fibers for synthetic fibers. In this study, a hybrid composite was developed by reinforcing the natural fiber “cordia dichotoma” and filler “granite powder” into polyester resin. This composite was fabricated using hand lay-up method. Cordia dichotoma fibers were surface treated with NaOH for reducing the hydrophilic nature of the fiber. Unused industrial waste in the form of granite powder obtained from the granite polishing industry is utilized as reinforcement in polymer composite. The hybrid composite was prepared by reinforcing a constant cordia dichotoma fiber content of 20 wt % and varying the granite powder weight (wt. %) percentages (0, 5, 10, 15, and 20) into polyester resin. Mechanical properties (tensile, flexural and impact) of hybrid composites were investigated. The novelty of this work lies in utilization of granite powder sourced from industrial waste utilized as filler material. Granite, as one of the hard materials, may improve wear and other mechanical properties. Following the results obtained, granite powder could be evidenced as a good filler material for the betterment of composites mechanical properties. Also, the ability of this filler material is proved in decreasing water absorption and chemical resistance. Scanning electron microscope (SEM) analysis was performed to investigate the bonding and distribution of granite powder within both the fiber as well as resin in the composite. Besides, the presence of chemical functional groups in the composite was traced by Fourier transform Infrared spectroscopy (FTIR). Also, Thermo-gravimetric analysis (TGA) was carried out and the composite was found to be thermally stable up to 415 °C.  相似文献   

4.
Adverse effects of a high‐water absorption rate on properties of a glass fiber–reinforced polyamide 6 (GF‐PA6) composite significantly reduce performance and limit application in humid environments. In this paper, a polyfunctional silane (PFS) coupling agent with amino (–NH2) and imino (–NH) groups and styrene acrylonitrile copolymer (SAN) were added to a composite, GF‐PA6, to prepare GF‐PA6/SAN/PFS composites via melt blending in a twin‐screw extruder. The effects of SAN and PFS content on the static and dynamic mechanical properties of the composites before and after water absorption were investigated in detail. The microstructure of the fracture surface was analyzed by a scanning electron microscope (SEM). The results show that the addition of SAN and PFS could effectively inhibit water absorption of the GF‐PA6 composites. The alkoxyl groups on PFS reacted chemically with the nitrile groups of SAN, which enriched SAN on the interface between the fiber and matrix during the extrusion and mixing process to improve the effect of water prevention. Therefore, the mechanical properties of the wet state were notably improved while preventing water from permeating the interface by only the addition of a small amount of SAN and PFS. Dynamic mechanical analysis (DMA) results showed that the addition of PFS improved the compatibility of PA6 with SAN and enhanced the interface adhesion between fiber and PA6. In terms of test result of the comprehensive performance, 10 phr SAN with 0.6 phr PFS was the best dosage.  相似文献   

5.
The research article focused on the effect of wood sawdust as secondary filler reinforcement in Indian mallow fiber yarn mat reinforced with polyester composites. Composites were fabricated along the transverse and longitudinal orientation in six different combinations by compression molding machine. The mechanical properties of composites by single and double layer yarn mat with and without wood sawdust filler were evaluated while loading composites specimen on warp and weft direction at the first time in this research paper. The Indian mallow fiber double layer longitudinal orientation yarn mat/wood sawdust filler/polyester composite specimen along the warp direction was found to exhibit optimum mechanical properties compared to other composites. Furthermore, the Indian mallow fiber yarn mat composites were fabricated with helmet and civil construction pipes at first time in this work to replace the synthetic fiber through natural fiber. Scanning electron microscopy was performed to study the morphologies of internal crack and fractured surface of composites.  相似文献   

6.
Blends of chitosan and biodegradable synthetic aliphatic polyesters (polycaprolactone, poly(butylene succinate), poly[(butylene succinate)-co-adipate], poly[(butylene terephthalate)-co-adipate], and poly(lactic acid)) were injection-molded. These samples were immersed in isotonic solution at 37 degrees C for a period of 60 d. The water uptake and the degradation properties, as measured by the loss in tensile strength, were evaluated as a function of time. In this study, the rate and the equilibrium water uptake were proportional to the amount of chitosan in the blend. The addition of HA to chitosan and polyester significantly reduced the equilibrium water uptake. The water uptake did not follow the classical Fickian phenomena and could be expressed by a two-stage sorption non-Fickian diffusion model. Contact angle measurement was used to quantify the changes in surface hydrophilicity as a function of chitosan and polyester composition. The glycerol contact angle decreased with increasing synthetic components in the blend. The blends and composites also showed increased degradation, as quantified by a loss in their mechanical properties, with increase in natural content. The degradation of properties was directly related to the water uptake of the blends; the higher the water uptake, the higher the degradation. Pure polyesters, while having low water uptake, nevertheless showed significant degradation by a precipitous drop in the strain at break. Among the polyesters, poly(lactic acid) displayed maximum degradation, while polycaprolactone displayed the least.  相似文献   

7.
Two types of novel Polyhedral Oligomeric Silsesquioxanes respectively containing hydroxyl group and epoxy group (P-POSS and E-POSS) were achieved and evaluated. The structure had been characterized by IR spectra and NMR spectra. Dicyclopentadiene bisphenol dicyanate ester (DCPDCE) composites were then prepared using P-POSS and E-POSS respectively. Their effect on the curing kinetics, dielectric, mechanical, flame-retardant and thermal properties and water absorption of the resulting composites were investigated. The results suggested that the addition of modified POSS could facilitate the curing reaction of DCPDCE. Besides, the DCPDCE composites containing modified POSS exhibited excellent flame-retardant property over pure DCPDCE resin. Adding only a little amount as small as 1.5 wt% P-POSS or 2.5 wt% E-POSS could change the UL-94V of DCPDCE resin from V-2 to V-0. The composite with P-POSS exhibited better flame-retardant and thermal properties than the composite with E-POSS. However, composite filled with E-POSS presented better dielectric property and lower water absorption.  相似文献   

8.
Banana pseudostem fiber which is a lignocellulosic material, relatively inexpensive, and abundantly available was assessed in terms of its fiber‐matrix adhesion and dispersion in composites. Different types of adhesives were used. The mechanical and water absorption properties were investigated. Overall, for the produced composites, the incorporation of sawdust‐urea‐formaldehyde resin into prehydrolyzed banana fiber resulted in the best mechanical properties. Good adhesion‐fiber interaction is believed to be responsible for the good ultimate performance. The superior reinforcing characteristics of sawdust resin were shown by scanning electron microscopy (SEM), which revealed better fiber‐matrix adhesion. Water absorption tests revealed that the presence of the adhesives affected the amount of water absorbed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
In order to improve the mechanical properties of rubber-matrix composites, carboxyl-terminated hyperbranched poly (2-hydroxypropane-1,2,3-tricarboxylic acid) grafted carbon black (CB-g-CTHBP) was prepared, and it could be stably dispersed in water for up to 90 days. CB-g-CTHBP dispersion and natural rubber latex were blended to obtain NR/CB-g-CTHBP, and the effect of CB-g-CTHBP content on the mechanical properties of composites was discussed. The results show that the dispersibility and wettability of CB-g-CTHBP to composites are significantly improved after grafting hyperbranched polymer onto the surface. Compared with the composite filled with NR/CB, when the amount of filler is 30 phr, tensile strength, tear strength, and shore A hardness of NR/CB-g-CTHBP increase by 54.78%, 55.13%, and 20.96%, respectively. Moreover, CB-g-CTHBP could disperse more evenly in the natural rubber-matrix, and the interaction between CB-g-CTHBP and rubber-matrix could further enhance in the composite.  相似文献   

10.
The effect of types of fillers on mechanical properties of rigid polyurethane composite samples was investigated. Polyurethane (PU) composites were prepared using a molasses polyol (MP, a mixture of molasses and polyethylene glycol, Mw=200) diphenylmethane diisocyanate (MDI) and fillers. The following plant particles, bamboo powder, roast bamboo powder, wood meal, coffee grounds, ground coffee bean parchment and cellulose powder, were used as fillers. The mixture of MP and fillers was reacted with MDI by adding an adequate amount of acetone as a solvent. The content of fillers was defined as the ratio of filler weight to total weight of polyol and fillers. The filler content was varied from 10 to 90 wt%. Polyurethane (PU) composites were prepared using fillers with MP. Lengths of major axis and minor axis for each particle regarded as an ellipse were measured using an optical microscope. Averages of diameter and aspect ratio were derived for each plant particle. The relationships between these average values and the mechanical properties, such as strength and elastic modulus, determined by the compression tests were investigated. The effect of filler content was estimated using the apparent volume ratio which is determined as the ratio of the apparent volume of fillers to the reciprocal values of the apparent density of samples. The master curves of the relationships between the specific values of mechanical properties and the apparent volume ratio were obtained. It was found that the compression strength and the elastic modulus for composite samples with different fillers showed maximum values at average aspect ratio around 3. It was also found that the apparent volume ratio, where the mechanical properties showed maximums, decreases with increasing aspect ratio. Using master curves, it is possible to evaluate the mechanical properties of plant particle filled polyurethane composites are described.  相似文献   

11.
Plaster composites have been developed by the authors, aiming the manufacture of plasterboards and other building materials with enhanced properties. Polymeric plaster composites,obtained from hydration of commercial plaster of Paris with aqueous solutions of a commercial polyester, were characterized by thermogravimetry (TG) and differential thermal analysis (DTA). A method using derivative thermogravimetry (DTG) was developed to determine the polymer content in the composites and its distribution. Samples prepared conventionally by hydration of plaster of Paris with water were used as reference. Independently of the initial solution concentration, all the composites show an even distribution of the polymer, which presence enhances the composite mechanical strength. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
In the present work, tamarind fibers were extracted from ripened fruits by the water retting process. Using these fibers as reinforcement and unsaturated polyester as matrix, composite samples were prepared by the hand lay-up technique. The effect of chemical surface treatments (alkali and silane) of tamarind fibers on the mechanical properties, chemical resistance, and interfacial bonding was studied. The mechanical properties of the composites with surface modified fibers were found to be higher than those with unmodified fibers. Morphological studies indicated improvement of interfacial bonding by alkali and silane coupling agent treatments of the fibers. The composites were found to be resistant to many chemicals.  相似文献   

13.
Carbon-black-modified carbon nanofibers were prepared by electrospinning, and the effects of the carbon black content and processing temperature on the physical and chemical properties of the resulting composites were investigated. The results showed that the conductivity of carbon-black-modified nanofibers increased with the carbon black content. The addition of carbon black in a 20% mass ratio increased the conductivity of the composite(0.75 S/cm) by 230% compared with the undoped nanofiber(2.47 S/cm), while the adulteration with 5% CB allowed the preservation of the mechanical properties of the composites. The fabricated carbon-black/carbon-nanocomposite fibers exhibited excellent oil absorption and electrothermal conversion performance. Furthermore, the conductivity and oil absorption capacity increased with increasing carbonization temperature. With a carbonization temperature of 1000℃(5% carbon black), the voltage was 31 V, the current was 0.66 A, and the surface temperature of the composite reached 234.1℃. The overall enhancement in physical properties upon the addition of even low amounts of carbon black makes these composites advantageous for future industrial applications.  相似文献   

14.
The work outlines the synthesis of a new and easy technique to develop sustainable composites of sawdusts reinforced polyester resin composites. For shaping a new approach we have found very rare approach for developing composites with sawdusts of Mahagoni wood (Swietenia mahagoni) reinforced polyester resin composites in open literatures. Due to this gap, a plan made to develop untreated and treated sawdusts (very common in Bangladesh and many other countries of the world) reinforced strong and durable composites with unsaturated polyester resins along with their biodegradability, thermal and mechnical properties where the material properties were revealed and corelations were elaborated in the subsequent sections. Specifically, the tensile strengths of virgin resin (VR), untreated sawdust reinforced composite (UTSDC) and 4% caustic soda treated sawdust reinforced composite (4TSDC) are 10.77, 15.83 and 21.64 N/mm2, respectively. That means the observed reinforcement property for UTSDC and 4TSDC increased ~47% and 101%, respectively. Moreover, the binding phenomena were explained with the own schamatic presentation. The composite phenomena was explained sequentially by using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction, etc. Between the developed composites 4TSDC was strong (25% as compared from tensile strength) and durable (8% as observed in biodegradability results) than the UTSDC of unsaturated polyester resin. The pattern of water uptake follows usual Fickian diffusion behavior. The observed properties of the developed convincible composites indicate that they can be considered for indoor to outdoor applications especially for using the fence, roof, furniture items like chair, table, park benches, etc.  相似文献   

15.
Viscoelastic properties of cellulose microfibril—polymer composites and paper sheets were studied with dynamic mechanical analysis as a function of relative humidity in order to assess the bonding properties in cellulosic networks. The amount of associated water in the composites (equilibrium moisture content) was measured by thermogravimetry. Water plasticization was evidenced by DMA both in composite and paper samples. Polymers with high affinity to water, e.g. carboxymethyl cellulose, clearly increased the water plasticization in the composites. The plasticization behavior of paper sheet samples was also influenced by polymers. However, the effect of polymers on the plasticization was different between the composite and the paper samples. The consideration of fiber bonding domain in paper structure as a gel-like layer consisting of cellulose microfibrils, polymers, and associated water can help to unveil some of the complex mechanisms behind the strength in fibrous cellulosic materials.  相似文献   

16.
This paper investigates the possibility of improving the mechanical and thermal properties of epoxy and unsaturated polyester toughened epoxy resins through the dispersion of octadecyl ammonium ion-exchanged montmorillonite (organoclay) through exfoliated mechanism. The nanocomposites prepared are characterized for their structural change and studied for their crystallite size, mechanical, thermal and water absorption (hydrophilicity) properties. The mechanical data indicates significant improvement in the flexural and tensile properties over the neat epoxy and UP-epoxy matrix according to the percentage content of organoclay. The thermal behavior too shows noticeable enhancement in glass transition temperature T g and high thermal stability. Hydrophilicity of all the composites decreases irrespective of the concentration of organoclay on the epoxy and UP-epoxy matrices. The homogeneous morphology of epoxy and UP toughened epoxy nanocomposite hybrid systems is ascertained using scanning electron microscope (SEM). X-ray results point out that the cetyl ammonium modified clay filled composites exhibited the exfoliated structure.  相似文献   

17.
Rice straw was employed for the preparation of lignocellulosic‐poly(vinyl chloride) (PVC) composites. The effect of pretreatment of rice straw, concentration of PVC, pressure as well as pressing temperature on the mechanical properties and water absorption was studied. Also, the effect of lignin as coupling agent on the mechanical properties and water absorption of composite was studied. Composites of rice straw comprising both PVC and a coupling agent offer superior properties compared to those made from only rice straw and PVC. The extent of improvement in the mechanical properties and dimensional stability of composites depended not only on the pretreatment of rice straw, concentration of PVC and lignin but also on pressure and pressing temperature. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
Isotactic poly(propylene) (iPP)/wood sawdust composite containing 30 wt.% of the natural fibers was first prepared by melt-mixing in a twin screw extruder and later molded into various shaped specimens by injection molding machine. The effect of natural weathering, water immersion, and gamma-ray irradiation on mechanical properties of the specimens were studied. All of the tensile properties were improved with initial increase in the exposure time of natural weathering of up to 30 days and decreased afterwards. Similarly, the tensile strength and the Young's modulus of the composite increased with initial increase in the radiation dosage and decreased afterwards. On the contrary, the tensile strength and the elongation at break of the composite were unchanged after having been immersed in water for the first 15 days, but increased slightly afterwards. The alteration in these properties were postulated to be a result of the interplay between the cross-linking and the chain scission reactions that occurred during natural weathering and gamma-ray irradiation and the plasticizing effect of the absorbed water molecules during water immersion.  相似文献   

19.
This work focuses on the preparation of copper nanoparticles-modified polyamide 6 composites (denoted as nano-Cu/PA6) by in situ polymerization, with which cupric oxide as metallic copper source is directly reduced to metallic copper in the process of the opening-ring polymerization of ε-caprolactam only using the reducing atmosphere of reaction system. The obtained composites are characterized by means of transmission electron microscopy, X-ray diffraction, laser granulometry instrument, and ultraviolet–visible absorption spectroscopy. Moreover, the friction and wear resistance, mechanical strength, and antistatic performance of as-prepared composites are also readily evaluated. The results show that cupric oxide as filler is reduced to metallic copper and the as-reduced copper nanoparticles with 4–5-nm-size clusters separately disperse in polyamide 6 (PA6) matrix. Additionally, the addition content (mass fraction) of cupric oxide has significant effect on the crystalline form of PA6, and γ crystalline form of PA6 is predominant when higher dosage of CuO is introduced to fabricating nano-Cu/PA6 composites. Moreover, introducing a proper amount of CuO filler favors to generate nano-Cu/PA6 composites with improved mechanical properties and wear resistance. Particularly, nano-Cu/PA6 composite prepared at a CuO content of 0.5 % possesses the best tensile strength and wear resistance, showing promising application as a functional polymer–matrix composite.  相似文献   

20.
The effects of the amounts of starch, sodium acrylate (NaAA) and dicumyl peroxide (DCP) on the properties of chloroprene rubber (CR)/starch/NaAA composites prepared by melting method were investigated. The results showed that the addition of starch improved the mechanical properties, but decreased the water‐absorbing capacity of the composite, most likely due to the decrease in the local concentration of the main water‐absorbing material sodium polyacrylate and the increase in crosslinking density of the composite resulting from the reaction between starch and CR. This reaction was verified by the vulcanized curves, DSC curves, and the cut surface morphology. The as‐prepared composite demonstrated higher water‐absorbing capacity, resulting from the incorporation of NaAA. The mechanical properties decreased with increasing the DCP loading, and the water‐absorbing ratio is the maximum at 1.0 phr DCP. The tensile strength of the composite decreased significantly after water immersion, due to the absorbed water acting as a plasticizer. The extracted component from composites after water immersion is mainly sodium polyacrylate according to Fourier transform infrared (FT‐IR) spectroscopy analysis. The morphology of the composites before and after water immersion was observed by optical transmission microscopy (OTM). The results indicated that the starch exhibits a good dispersion state, and the water‐absorbing capacity results primarily from sodium polyacrylate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号