首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
This paper investigates the effect of hydroxyapatite nanoparticles (HA) on the cure characteristics, tensile and tear strength, elongation at break, hardness, abrasion resistance, heat build-up, resilience, glass transition temperature, oil resistance, alternating current (AC) conductivity and transport properties of chlorinated nitrile rubber (Cl-NBR). The maximum and minimum torque values were increased whereas the cure time values were decreased with the HA content in the Cl-NBR. The uniform dispersion of HA in Cl-NBR was obtained from scanning electron microscopy (SEM) and X-ray diffraction (XRD). Differential scanning calorimetry (DSC) showed the increased glass transition temperature of Cl-NBR with the addition of HA particles. Mechanical properties, conductivity and oil resistance of the composites were greatly increased with the loading of hydroxyapatite. Diffusion results were explained in terms of the loading of nanoparticles and size of the penetrant molecules. Arrhenius and thermodynamic parameters for the diffusion process have been estimated and an anomalous diffusion mechanism was observed.  相似文献   

2.
The morphology and mechanical and viscoelastic properties of a series of blends of natural rubber (NR) and styrene butadiene rubber (SBR) latex blends were studied in the uncrosslinked and crosslinked state. The morphology of the NR/SBR blends was analyzed using a scanning electron microscope. The morphology of the blends indicated a two phase structure in which SBR is dispersed as domains in the continuous NR matrix when its content is less than 50%. A cocontinuous morphology was obtained at a 50/50 NR/SBR ratio and phase inversion was seen beyond 50% SBR when NR formed the dispersed phase. The mechanical properties of the blends were studied with special reference to the effect of the blend ratio, surface active agents, vulcanizing system, and time for prevulcanization. As the NR content and time of prevulcanization increased, the mechanical properties such as the tensile strength, modulus, elongation at break, and hardness increased. This was due to the increased degree of crosslinking that leads to the strengthening of the 3‐dimensional network. In most cases the tear strength values increased as the prevulcanization time increased. The mechanical data were compared with theoretical predictions. The effects of the blend ratio and prevulcanization on the dynamic mechanical properties of the blends were investigated at different temperatures and frequencies. All the blends showed two distinct glass‐transition temperatures, indicating that the system is immiscible. It was also found that the glass‐transition temperatures of vulcanized blends are higher than those of unvulcanized blends. The time–temperature superposition and Cole–Cole analysis were made to understand the phase behavior of the blends. The tensile and tear fracture surfaces were examined by a scanning electron microscope to gain an insight into the failure mechanism. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2189–2211, 2000  相似文献   

3.
The present study investigated the effects of two types of natural rubber and different blend ratios on the cure, tensile properties and morphology of natural rubber/recycled chloroprene rubber blends. The blends of natural rubber/recycled chloroprene rubber were prepared by using laboratory two-roll mill. The result showed that the cure time prolonged with the addition of recycled chloroprene rubber (rCR). Comparability, natural rubber/recycled chloroprene rubber (SMR L/rCR) blendcured rapidly than epoxidized natural rubber/recycled chloroprene rubber (ENR 50/rCR) blend. The addition of rCRalso caused a decrement in the tensile strength and elongation at break for both rubber blends. The SMR L/rCR blendsshowed higher tensile strength and elongation at break compared to those of ENR 50/rCR blends at any blend ratios.  相似文献   

4.
田明  闫寿科 《高分子科学》2016,34(7):820-829
The mechanical properties and phase morphologies of cis-1,4-butadiene rubber (BR) blended with polyethylene (PE) at different blend ratios were studied. The tensile test results show that the PE exhibits excellent reinforcing capabilities towards BR. Blending BR with PE results in a remarkable enhancement of tensile strength, modulus and the elongation at break simultaneously. An increment of tensile strength from 1.11 MPa to 16.26 MPa was achieved by incorporation of 40 wt% PE in the blends. The modulus and elongation at break of 40/60 PE/BR blends are also about 5 times higher than those of the pure BR treated under exactly the same conditions. The tear test indicates that the tear strength also increases with the increase of PE content. It reaches 58.38 MPa for the 40/60 PE/BR blend, which is approximately 10 times higher than that of the pure BR. Morphological study demonstrates that the PE forms elongated microdomains finely dispersed in the BR matrix when its content is over 30 wt%, which corresponds to the remarkably enhanced mechanical properties. According to the results, reinforcement mechanism of PE toward BR dependent on the microstructure has been discussed and two different mechanisms have been proposed.  相似文献   

5.
Nitrile butadiene rubber (NBR) was mixed with high density polyethylene (HDPE) thermoplastics with different ratio namely (100/20), (100/40), (100/60) and (100/80). The obtained blends were subjected to gamma irradiation with varying dose from 50 to 250 kGy. The induced crosslinking and hence the improvement in the different properties were followed up as a function of irradiation dose. Mechanical properties as tensile strength, tensile modulus at 50 % elongation, elongation at break percent, permanent set and hardness were carried out as a function of irradiation dose and blend ratio. Moreover, physical properties namely, gel fraction % and swelling number were found to improve with the increase of irradiation dose up to 250 kGy and with the increase of the content of HDPE in blend. Moreover, presence of NBR enhances the shrinking properties of the obtained blend which can be used as a good heat shrinkable material.  相似文献   

6.
Dynamic mechanical properties of chlorinated butyl rubber blends   总被引:1,自引:0,他引:1  
The binary blends are prepared by chlorinated butyl rubber (CIIR) and 3,9-bis[1,1-dimethyl-2{β-(3-tert-butyl-4-hydroxy-5-methylphenyl)propionyloxy}ethyl]-2, 4, 8,10-tetraoxaspiro[5,5]-undecane (AO-80), which are investigated by dynamic mechanical analysis and thermal analysis. It is shown that CIIR/AO-80 blends clearly exhibit two kinds of relaxations, which are attributed to the relaxation of CIIR-rich matrix and AO-80-rich domains, respectively, and attenuated total reflection (ATR)-FTIR spectrum indicates that the existence of intermolecular hydrogen bonds between AO-80 and CIIR. When AO-80 is replaced by petroleum resins, only one loss peak appears, and the position of it is related to the softening point and the content of the petroleum resin. In order to regulate the damping property of CIIR/petroleum resin blend, the ternary blend of CIIR/petroleum resin/AO-80/is prepared and a second peak appears at higher temperature indicating that a good damping material is obtained.  相似文献   

7.
Epoxidized natural rubber (ENR) and thermoplastic polyurethane (TPU) blends were prepared by simple blend and dynamic vulcanization. The main objective was to prepare a low‐hardness TPU material with good damping and elastic and mechanical properties. It was found that the incorporation of ENR into the blend shows a reduction in Young's modulus, hardness (i.e. <70 Shore A), damping properties (i.e. tan δ < 0.3), and tension set (i.e. <20%) compared with the pure TPU. This indicates the formation of softer TPU materials with superior damping and elastomeric properties. However, incorporation of ENR sacrificed mechanical properties in terms of tensile strength and elongation at break, but these still remain in the range of applicability for industrial uses. It was also found that dynamic vulcanization caused enhancement of mechanical properties, relaxation, damping, rheological properties, and elasticity of the blends. Temperature scanning stress relaxation measurements revealed an improvement in stress relaxation properties and thermal resistance of the dynamically cured ENR/TPU blend. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The properties of filled polymers depend on the properties of the matrix and the filler, the concentration of the components and their interactions. In this research we investigated the rheological and mechanical properties and thermal stability of polychloroprene/chlorosulfonated polyethylene (CR/CSM) rubber blends filled with nano- and micro-silica particles. The density of the nano-silica filled CR/CSM rubber blends was lower than that of the micro-silica filled samples but the tensile strength and elongation at break were much higher. The nano-silica filled CR/CSM rubber blend has higher V r0/V rf values than micro-silica composites and show better polymer–filler interaction according to Kraus equation. The nano-silica filled CR/CSM rubber blends were transparent at all filler concentration, and have higher glass transition values than micro-silica filled compounds. The higher values of the glass transition temperatures for the nano- than the micro-filled cross-linked systems are indicated by DMA analysis. The nano-filled cross-linked systems have a larger number of SiO–C links than micro-filled cross-linked systems and hence increased stability.  相似文献   

9.
The mechanical and physical properties of blends based essentially on nitrile butadiene rubber (NBR) and different ratios of high density polyethylene (HDPE) up to 25 parts per hundred part of rubber (phr) before and after electron beam irradiation were investigated. The values of tensile strength (TS), tensile modulus at 50% elongation (M50), hardness and gel fraction % (GF%) of NBR/HDPE blends were increased with both irradiation dose and by increasing the content of HDPE in the blends. On the other hand, the values of elongation at break (E b ) were decreased with both irradiation dose and the content of HDPE in the blends. By loading NBR/HDPE (100/25) blend with ethylene vinyl acetate (EVA) copolymer the mechanical and physico-chemical properties were improved. Moreover, the degree of improvement is proportional to the loading content of EVA.  相似文献   

10.
Green biodegradable thermoplastic natural rubber (GB‐TPNR) based on simple blend of natural rubber (NR) and poly(butylene succinate) (PBS) was prepared using three NR alternatives: unmodified NR and epoxidized NR with 25‐ or 50‐mol% epoxide (ie, ENR‐25 or ENR‐50). It was found that ENR‐50/PBS blend showed the best compatibility, which resulted in superior mechanical and thermal properties with the highest crystallinity of the PBS phase, on comparing with the ENR‐25/PBS and NR/PBS blends. This might be attributed to stronger chemical interactions between the epoxide groups in ENR‐50 and the polar functional groups in PBS, which were confirmed by Fourier transform infrared (FTIR). Furthermore, scanning electron microscopy (SEM), atomic force microscopy (AFM), and polarizing optical microscopy (POM) micrographs of ENR‐50/PBS blend revealed phase separation with finer‐grained cocontinuous structure than in ENR‐25/PBS and NR/PBS simple blends. Furthermore, the chemical interactions in ENR‐50/PBS blend enhanced the resistance to accelerated weathering.  相似文献   

11.
In the present study, the effect of electron beam irradiation on the morphological, thermal, and mechanical properties of waste polyamide copolymer (WPA‐66/6) blended with different contents of acrylonitrile butadiene rubber (NBR) were studied. The prepared blends were subjected to irradiation doses up to 150 kGy and the structural modifications were discussed; non‐irradiated blends were used as control. Mechanical properties, namely, tensile strength (TS), yield strength, elongation at break, and hardness, were followed up as functions of irradiation dose and degree of loading with rubber content. On the other hand, the influence of irradiation dose on the thermal parameters, melting temperature, heat of fusion, ΔHm of the recycled PA copolymer, and its blend with NBR were also investigated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
High styrene rubber (HSR)/styrene butadiene rubber (SBR) blends at different ratios were exposed to various doses of electron beam irradiation. The effect of irradiation dose and blend ratios on the mechanical properties and shape memory characteristics in terms of strain fixation) rate (Rf) and strain recovery rate (Rr) was investigated. The results revealed that rich styrene blends displayed higher tensile strength and hardness than low styrene content blends at all irradiation doses. However, elongation at break, and toughness were lower for rich styrene content. Also, it was observed that for most specimens, the tensile strength, elongation at break and hardness increases up to100 kGy. Increasing irradiation doses resulted in slight deterioration in some mechanical properties only for low styrene content at150 kGy. According to the normalized tensile stress at 25% elongation, it was found that the contribution of irradiation in enhancing the mechanical properties is higher for rich butadiene blends. On the other hand, it was observed that rich styrene content blends possess higher Rf and Rr at all the irradiation doses and stretching temperatures. However, the increase of irradiation dose decreases Rf values; the extent of this decrease depends on the blend ratios. Conversely, for all blends, Rr were increased by increasing irradiation dose and styrene content ratios.  相似文献   

13.
Thermoplastic elastomer (TPE) comprising air‐dried sheet or natural rubber (ADS or NR) and high‐density polyethylene (HDPE) was prepared by a simple blending technique. NR and HDPE were mixed with each type of phenolic compatibilizer (HRJ‐10518 or SP‐1045) or liquid natural rubber (LNR) at 180°C in an internal mixer. The mixing torque, shear stress, and shear viscosity of the blends increased with increasing amounts of NR. Positive deviation blend (PDB) for the blends containing active hydroxyl methyl phenolic resin in HRJ‐10518 or dimethyl phenolic resin in SP‐1045 was obtained. PDB was not observed for the blends without the compatibilizers or with LNR. The blends with HRJ‐10518 or SP‐1045 were compatible or partially compatible while the LNR blends were incompatible. In the phenolic compatibilized blends, NR dispersed in the HDPE matrix was found in the NR/HDPE blends of 20/80, 40/60, and 50/50 ratios. HDPE dispersed in NR matrix was obtained in the NR/HDPE blend of 80/20 ratio, and the co‐continuous phase was accomplished in the NR/HDPE blend of 60/40 ratio. The NR/HDPE blend at 60/40 ratio compatibilized with HRJ‐10518 and fabricated by a simple plastic injection molding machine exhibited higher ultimate tensile strength and elongation at break (EB). Incorporation of parafinic oil caused a decreasing tendency in tensile strength with increases in EB. The TPNRs exhibited high elastomeric nature with low‐tension set. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Nanotechnology has been explored recently as a means of enhancing the properties of conventional elastomers for engineering applications. In the current study, the effect of nanofillers on air impermeability properties of Brominated isobutylene‐isoprene rubber (BIIR)/Epoxidized natural rubber (ENR) blend has analyzed for automotive applications. The ENR chosen is ENR 25 and ENR 50 (25 and 50% epoxidation) and prepared the blends in a ratio of 75:25 (BIIR:ENR), and from both blend based composites, a part of carbon black replaced with graphene nanoplatelets (GNP). The physical and thermal properties were compared for both binary blend nanocomposites to study the level of exfoliation and reinforcement behavior of GNP. Morphology studies were employed to reveal the level of interaction between GNP and carbon black in both blends. The influence of epoxidation in the formation of nanostructures in both blends have been evaluated, and the effect of nanostructures on air permeability properties was studied. The air impermeability of BIIR‐ENR 50 nanocomposites were improved with increasing platelet concentration, a 30% improvement in air permeability is obtained for BIIR‐ENR 50 composites over BIIR ‐ENR 25.  相似文献   

15.
The viscoelastic properties of binary blends of nitrile rubber (NBR) and isotactic polypropylene (PP) of different compositions have been calculated with mean‐field theories developed by Kerner. The phase morphology and geometry have been assumed, and experimental data for the component polymers over a wide temperature range have been used. Hashin's elastic–viscoelastic analogy principle is used in applying Kerner's theory of elastic systems for viscoelastic materials, namely, polymer blends. The two theoretical models used are the discrete particle model (which assumes one component as dispersed inclusions in the matrix of the other) and the polyaggregate model (in which no matrix phase but a cocontinuous structure of the two is postulated). A solution method for the coupled equations of the polyaggregate model, considering Poisson's ratio as a complex parameter, is deduced. The viscoelastic properties are determined in terms of the small‐strain dynamic storage modulus and loss tangent with a Rheovibron DDV viscoelastometer for the blends and the component polymers. Theoretical calculations are compared with the experimental small‐strain dynamic mechanical properties of the blends and their morphological characterizations. Predictions are also compared with the experimental mechanical properties of compatibilized and dynamically cured 70/30 PP/NBR blends. The results computed with the discrete particle model with PP as the matrix compare well with the experimental results for 30/70, 70/30, and 50/50 PP/NBR blends. For 70/30 and 50/50 blends, these predictions are supported by scanning electron microscopy (SEM) investigations. However, for 30/70 blends, the predictions are not in agreement with SEM results, which reveal a cocontinuous blend of the two. Predictions of the discrete particle model are poor with NBR as the matrix for all three volume fractions. A closer agreement of the predicted results for a 70/30 PP/NBR blend and the properties of a 1% maleic anhydride modified PP or 3% phenolic‐modified PP compatibilized 70/30 PP/NBR blend in the lower temperature zone has been observed. This may be explained by improved interfacial adhesion and stable phase morphology. A mixed‐cure dynamically vulcanized system gave a better agreement with the predictions with PP as the matrix than the peroxide, sulfur, and unvulcanized systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1417–1432, 2004  相似文献   

16.
Dynamic vulcanization of reclaimed tire rubber (RTR) and HDPE blends was reported. The effect of blend ratio, methods of vulcanization, i.e. sulphur, peroxide, and mixed system and the addition of compatibilizer on mechanical, thermal, and rheological properties were investigated. The blend with highest impact strength was obtained from 50/50 RTR/HDPE vulcanized by sulphur. Increasing the RTR content to more than 50% resulted in a decrease in the impact strength of blend, most likely due to the increasing carbon black content. For tensile strength, the presence of rubber and carbon black, however, unavoidably caused a drop in this property. Comparing among three methods of vulcanization, sulphur system seems to be the most effective method. Results from solvent swelling ratio, glass transition temperatures and viscosity indicated that the sulphur vulcanization created the highest degree of cross-link and filler-matrix interaction in the RTR/HDPE blend. Morphology of the blends was also assessed by scanning electron microscopy (SEM).  相似文献   

17.
Crystallization of natural rubber (NR) was investigated in different morphology for NR/styrene butadiene rubber (SBR) blend and NR/polystyrene-(b)-polyisoprene (SI)/polystyrene (PS) blend. A purified NR (PC-TE) was prepared from pale crape via transesterification. In the blends, PC-TE formed various morphologies; that is, matrix phase, island phase and continuous phase with a nano-scale, respectively, in dependence upon the ratio of the rubbers. The crystallization rate of the blends was also significantly associated with the morphology of the rubbers.  相似文献   

18.
Rubber compounds are reinforced with fillers such as carbon black and silica. In general, filled rubber compounds shows smooth rheological behavior and mechanical properties. Variation in rheological behavior and mechanical properties was studied in terms of the filler composition using natural rubber compounds filled with both carbon black and silica CB/Si = 0/60, 20/40, 30/30, 40/20 and 60/0 phr (parts per hundred rubber is parts of any non-rubbery material per hundred parts of raw gum elastomer (rubbery material)). The rheological behaviour can be showed in measurement of Mooney viscosity and cure time. The Mooney viscosity of rubber compounds increase with the increasing the carbon black in the compounds. The compound filled with CB/Si of 30/30 and 60/0 showed abnormal rheological behaviour in which the cure time decreased suddenly and the increased at certain ratio during the measurement. The mechanical properties such as hardness, abrasion resistance and tensile stress at 300% elongation were studied. In the hardness and abrasion resistance measurement, the higher ratio CB/Si decrease contribution of silica, which resulting smaller of hardness value. Ratio CB/Si 40/20 gives an optimum filler blended. It is also clearly understood that higher abrasion resistance mainly due to the lower hardness value under the same condition. The tensile stress at 300% elongation of rubber compound increased with the increasing carbon black filler.  相似文献   

19.
Response surface methodology was used for predicting the optimal composition of vegetable oil and carbon black in rubber compounding. Central composite rotatable design for two variables at five levels was chosen as the experimental design. The data obtained from measurement of properties was fitted as a two variable second order equation and were plotted as contour plots using programme developed in MATLAB v.5. It is observed from the contour plots that the increase in cross-link density caused by the formation of rubber mono-layer from its multi-layer on increasing the carbon black loading upto the central point (50 phr) of experimental region increases 300% modulus and elongation at break and reduces the ultimate properties like tear strength and tensile strength. On the other-hand hardness increases with increase in solid inclusion of carbon black. From the contours it is observed that the addition of vegetable oil upto 2-3 phr, cross-link density increases due to its coupling action leading to increase in hardness and modulus and lowering of ultimate properties like tensile strength and elongation at break. Addition of further amount of vegetable oil shows less coupling and more plasticising effect leading to increase in tear strength, tensile strength and elongation at break and decrease in hardness and 300% modulus.  相似文献   

20.
Blends of natural rubber/virgin ethylene-propylene-diene-monomer (NR/EPDM) and natural rubber/recycled ethylene-propylene-diene-monomer (NR/R-EPDM) were prepared. A fixed amount of carbon black (30 phr) was also incorporated. The effect of the blend ratio (90/10, 80/20, 70/30, 60/40 and 50/50 (phr/phr)) on the compounding, mechanical and morphological properties of carbon-black-filled NR/EPDM and NR/R-EPDM blends was studied. The results indicated that both the carbon-black-filled NR/EPDM and NR/R-EPDM blends exhibited a decrease in tensile strength and elongation at break for increasing weight ratio of EPDM or R-EPDM. The maximum torque (S′MH), minimum torque (S′ML), torque difference (S′MH?ML), scorch time (ts2) and cure time (tc90) of carbon-black-filled NR/EPDM or NR/R-EPDM blends increased with increasing weight ratio of virgin EPDM or R-EPDM in the blend. SEM micrographs proved that, for low weight ratios of virgin EPDM or R-EPDM, the blends exhibited high surface roughness and matrix tearing lines. The blends also showed a reduction in crack path with increasing virgin EPDM or R-EPDM content over 30 phr. This reduction in crack path could lead to less resistance to crack propagation and, therefore, low tensile strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号