首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of therapeutics based on plasmid DNA (pDNA) relies on procedures that efficiently produce and purify the supercoiled (sc) plasmid isoform. Several chromatographic methods have been applied for the sc plasmid purification, but with most of them it is not possible to obtain the required purity degree and the majority of the supports used present low capacity to bind the plasmid molecules. However, the chromatographic monolithic supports are an interesting alternative to conventional supports due to their excellent mass transfer properties and their high binding capacity for pDNA. The separation of pDNA isoforms, using short non-grafted monolithic column with CarbonylDiImidazole (CDI) functional groups, is described in the current work. The effect of different flow rates on plasmid isoforms separation was also verified. Several breakthrough experiments were designed to study the effect of different parameters such as pDNA topology and concentration as well as flow rate on the monolithic support binding capacity. One of the most striking results is related to the specific recognition of the sc isoform by this CDI monolith, without flow rate dependence. Additionally, the binding capacity has been found to be significantly higher for sc plasmid, probably because of its compact structure, being also improved when using feedstock with increased plasmid concentrations and decreased linear velocity. In fact, this new monolithic support arises as a powerful instrument on the sc pDNA purification for further clinical applications.  相似文献   

2.
Separation of negatively charged molecules, such as plasmid DNA (pDNA), RNA and endotoxin forms a bottleneck for the development of pDNA vaccine production process. The use of affinity interactions of transition metal ions with these molecules may provide an ideal separation methodology. In this study, the binding behaviour of pDNA, RNA and endotoxin to transition metal ions, either in immobilised or free form, was investigated. Transition metal ions: Cu2+, Ni2+, Zn2+, Co2+ and Fe3+, typically employed in the immobilised metal affinity chromatography (IMAC), showed very different binding behaviour depending on the type of metal ions and their existing state, i.e. immobilised or free. In the alkaline cell lysate, pDNA showed no binding to any of the IMAC chemistries tested whereas RNA interacted significantly with Cu2+-iminodiacetic acid (IDA) and Ni2+-IDA but showed no substantial binding to the rest of the IMAC chemistries. pDNA and RNA, however, interacted to varying degrees with free metal ions in the solution. The greatest selectivity in terms of pDNA and RNA separation was achieved with Zn2+ which enabled almost full precipitation of RNA while keeping pDNA soluble. For both immobilised and free metal ions, ionic strength of solution affected the metal ion-nucleic acid interaction significantly. Endotoxin, being more flexible, was able to interact better with the immobilised metal ions than the nucleic acids and showed binding to all the IMAC chemistries. The specific interactions of immobilised and/or free metal ions with pDNA, RNA and endotoxin showed a good potential, by selectively removing RNA and endotoxin at high efficiency, to develop a simplified pDNA purification process with improved process economics.  相似文献   

3.
Identification of post-translational modifications of proteins in biological samples often requires access to preanalytical purification and concentration methods. In the purification step high or low molecular weight substances can be removed by size exclusion filters, and high abundant proteins can be removed, or low abundant proteins can be enriched, by specific capturing tools. In this paper is described the experience and results obtained with a recently emerged and easy-to-use affinity purification kit for enrichment of the low amounts of EPO found in urine and plasma specimens. The kit can be used as a pre-step in the EPO doping control procedure, as an alternative to the commonly used ultrafiltration, for detecting aberrantly glycosylated isoforms. The commercially available affinity purification kit contains small disposable anti-EPO monolith columns (6 μL volume, Ø7 mm, length 0.15 mm) together with all required buffers. A 24-channel vacuum manifold was used for simultaneous processing of samples. The column concentrated EPO from 20 mL urine down to 55 μL eluate with a concentration factor of 240 times, while roughly 99.7% of non-relevant urine proteins were removed. The recoveries of Neorecormon (epoetin beta), and the EPO analogues Aranesp and Mircera applied to buffer were high, 76%, 67% and 57%, respectively. The recovery of endogenous EPO from human urine was 65%. High recoveries were also obtained when purifying human, mouse and equine EPO from serum, and human EPO from cerebrospinal fluid. Evaluation with the accredited EPO doping control method based on isoelectric focusing (IEF) showed that the affinity purification procedure did not change the isoform distribution for rhEPO, Aranesp, Mircera or endogenous EPO. The kit should be particularly useful for applications in which it is essential to avoid carry-over effects, a problem commonly encountered with conventional particle-based affinity columns. The encouraging results with EPO propose that similar affinity monoliths, with the appropriate antibodies, should constitute useful tools for general applications in sample preparation, not only for doping control of EPO and other hormones such as growth hormone and insulin but also for the study of post-translational modifications of other low abundance proteins in biological and clinical research, and for sample preparation prior to in vitro diagnostics.  相似文献   

4.
An immobilised enzyme reactor (IMER) in the form of capillary monolith was developed for a micro-liquid chromatography system. The plain monolith was obtained by in situ thermal copolymerisation of glycidyl methacrylate and ethylene dimethacrylate in a fused silica capillary (200 × 0.53 mm ID) by using n-propanol/1,4-butanediol as porogen. The enzyme, α-chymotrypsin (CT), was covalently attached onto the monolith via triazole ring formation by click-chemistry. For this purpose, the monolithic support was treated with sodium azide and reacted with the alkyne carrying enzyme derivative. CT was covalently linked to the monolith by triazole-ring formation. The activity behaviour of monolithic IMER was investigated in a micro-liquid chromatography system by using benzoyl-L-tyrosine ethyl ester (BTEE) as synthetic substrate. The effects of mobile-phase flow rate and substrate feed concentration on the final BTEE conversion were investigated under steady-state conditions. In the case of monolithic IMER, the final substrate conversion increased with increasing feed flow rate and increasing substrate feed concentration. Unusual behaviour was explained by the presence of convective diffusion in the macropores of monolith. The results indicated that the monolithic-capillary IMER proposed for micro-liquid chromatography had significant advantages with respect to particle-based conventional high-performance liquid chromatography-IMERs.  相似文献   

5.
The growing demand on plasmid DNA (pDNA) manufacture for therapeutic applications requires a final product with higher quality and quantity, spending the least time. Most of the current processes for pDNA production use at least one chromatographic step, which often constitutes a key-step in the purification sequence. Monolithic stationary phases are new alternatives to the conventional matrices, which offer fast separation of pDNA due to their excellent mass transfer properties and their high binding capacity for large molecules, as pDNA. However, the efficient recovery of pure pDNA focuses on a suitable balance of the feedstock, adsorbent and mobile phase properties. To satisfy the increasing demand for pharmaceutical grade plasmids, we developed a novel downstream process which overcomes the bottlenecks of common lab-scale techniques while complying with all regulatory requirements. This work reports an integrative approach using the carbonyldiimidazole monolith to efficiently purify the supercoiled (sc) pDNA active conformation from other plasmid topologies and Escherichia coli impurities present in a clarified lysate. The monolith specificity and selectivity was also assessed by performing experiments with plasmids of several sizes of 2.7, 6.05 and 7.4 kilo base pairs (kbp), verifying the applicability to purify different plasmids. Hence, the process yield of the pDNA purification step using the CDI monolith was 89%, with an extremely reduced level of impurities (endotoxins and gDNA), which was reflected in good transfection experiments of the sc plasmid DNA sample. Overall, the analytical results and transfection studies performed with the pDNA sample purified with this monolithic enabling technology, confirmed the suitability of this pDNA to be used in pharmaceutical applications.  相似文献   

6.
A weak ion-exchange grafted methacrylate monolith was prepared by grafting a methacrylate monolith with glycidyl methacrylate and subsequently modifying the epoxy groups with diethylamine. The thickness of the grafted layer was determined by measuring permeability and found to be approximately 90nm. The effects of different buffer solutions on the pressure drop were examined and indicated the influence of pH on the permeability of the grafted monolith. Protein separation and binding capacity (BC) were found to be flow-unaffected up to a linear velocity of 280cm/h. A comparison of the BC for the non-grafted and grafted monolith was performed using beta-lactoglobulin, bovine serum albumin (BSA), thyroglobulin, and plasmid DNA (pDNA). It was found that the grafted monolith exhibited 2- to 3.5-fold higher capacities (as compared to non-grafted monoliths) in all cases reaching values of 105, 80, 71, and 17mg/ml, respectively. It was determined that the maximum pDNA capacity was reached using 0.1M NaCl in the loading buffer. Recovery was comparable and no degradation of the supercoiled pDNA form was detected. Protein z-factors were equal for the non-grafted and grafted monolith indicating that the same number of binding sites are available although elution from the grafted monolith occurred at higher ionic strengths. The grafted monolith exhibited lower efficiency than the non-grafted ones. However, the baseline separation of pDNA from RNA and other impurities was achieved from a real sample.  相似文献   

7.
This work studied the possibility of using polyethyleimine (PEI) as an affinity ligand for the purification of plasmid DNA (pDNA) from alkaline lysates using aqueous two-phase systems (ATPSs). The goal was to find conditions under which this cationic polymer could steer the partition of pDNA to the phase where less impurities accumulate. In poly(ethylene glycol) (PEG)/ammonium sulphate systems, neither free nor PEGylated PEI (pPEI) were able to change the partition of pDNA. This is probably due to the high salt concentration present in these systems that impair the interaction between pDNA and PEI. In PEG 3350/dextran 110 systems, the desired effect could be observed but 0.2-0.5M ammonium sulphate had to be added to prevent the co-partition of RNA to the same phase. These results were used to develop a methodology to obtain polyplexes from alkaline lysates in a two-step ATPSs extraction process. In the first step, a PEG 600/ammonium sulphate system is used to remove most impurities to the top phase. The pDNA-containing bottom phase is then isolated and contacted with a second PEG 3350/dextran 110 system supplemented with a small amount of pPEI (0.2%). Plasmid yield was 100% and the final preparation had no RNA and only small amounts of contaminant protein. Additionally, pDNA was obtained in the form of 53nm-sized polyplexes which are likely to suit specific gene delivery applications.  相似文献   

8.
Proteins conjugated to neutral biopolymers are of keen interest to the food and pharmaceutical industries. Conjugated proteins are larger and more charge shielded than un-reacted proteins, making purification difficult using conventional beaded chromatographic supports because of slow mass transfer rates, weak binding, and viscous solutions. Past methods developed for pharmaceuticals are unsuitable for foods. In this work, a food-grade whey protein-dextran conjugate was purified from a feed solution also containing un-reacted protein and dextran using either a column packed with 800 mL of a beaded support that was specifically designed for purification of conjugated proteins or an 8 mL tube monolith. The monolith gave a similar dynamic binding capacity as the beaded support (4-6 g/L), at a 42-fold greater mass productivity, and 48-fold higher flow rate, albeit at somewhat lower conjugate purity. Performance of the monolith did not depend on flow rate. In conclusion, monoliths were found to be well suited for the purification of whey protein-dextran conjugates.  相似文献   

9.
Melamine (MAM) was employed as a pseudo template to prepare a molecularly imprinted polymer monolithic column which presents the ability of selective recognition to Triamterene (TAT), whose structure was similar to that of MAM. Methacrylic acid and ethylene glycol dimethacrylate were applied as functional monomer and cross‐linker, respectively, during the in situ polymerization process. Chromatographic behaviors were evaluated, the results indicated that the molecularly imprinted polymer monolithic column possessed excellent affinity and selectivity for TAT, and the imprinting factor was high up to 3.99 when 7:3 of ACN/water v/v was used as mobile phase. In addition, the dissociation constant and the binding sites were also determined by frontal chromatography as 134.31 μmol/L and 132.28 μmol/g, respectively, which demonstrated that the obtained molecularly imprinted polymer monolith had a high binding capacity and strong affinity ability to TAT. Furthermore, biological samples could be directly injected into the column and TAT was enriched with the optimized mobile phase. These assays gave recovery values higher than 91.60% with RSD values that were always less than 3.5%. The molecularly imprinted monolithic column greatly simplified experiment procedure and can be applied to preconcentration, purification, and analysis of TAT in biological samples.  相似文献   

10.
The use of histidine-agarose chromatography in the purification of supercoiled (sc) plasmid DNA (pDNA) from Escherichia coli lysates has been reported recently. In the current work we describe a set of breakthrough experiments which were designed to study the effect of parameters such as flow-rate, temperature, concentration and conformation on the dynamic binding capacity of pDNA to the histidine support. One of the most striking results shows that the dynamic binding capacity for sc pDNA decreases linearly from 250.8 to 192.0 microg sc pDNA/mL when the temperature is varied from 5 to 24 degrees C. This behaviour was attributed to temperature-induced, pre-denaturation conformational changes which promote the removal of negative superhelical turns in sc pDNA molecules and decrease the interaction of DNA bases with the histidine ligands. The capacity for sc pDNA was highly improved when using feeds with higher pDNA concentrations, a phenomenon which was attributed to the fact that pDNA molecules in more concentrated solutions are significantly compressed. A maximum capacity of 530.0 microg pDNA/mL gel was obtained when using a 125 microg/mL pDNA feed at 1 mL/min and 5 degrees C, a figure which is comparable to the plasmid capacity values published for other chromatographic supports. Finally, a more than 2-fold increase in capacity was obtained when changing from open circular to sc pDNA solutions. Overall, the results obtained provide valuable information for the future development and implementation of histidine chromatography in the process scale purification of pDNA.  相似文献   

11.
胃蛋白酶亲和有机聚合物毛细管整体柱的制备及性能考察   总被引:1,自引:0,他引:1  
池翠杰  王伟  季一兵 《色谱》2014,32(8):791-797
以热引发原位聚合方法制备了聚(甲基丙烯酸缩水甘油酯(glycidyl methacrylate,GMA)-乙二醇二甲基丙烯酸酯(ethyleneglycol dimethacrylate,EDMA))毛细管整体柱,对整体柱的性能进行了表征。结果表明,柱内部结构均匀、渗透性好;整体柱能够实现苯等中性小分子化合物的分离,具有反相色谱特征,重现性和稳定性良好。利用整体柱环氧基团的活性,采用间接法,以戊二醛为连接臂制备胃蛋白酶亲和手性整体柱。在毛细管电色谱模式下进行了柱分离性能研究,并对缓冲液pH值和运行电压等分离条件进行了考察。结果表明,亲和整体柱对4种碱性手性药物(奈福泮、氨氯地平、西酞普兰、扑尔敏)有拆分效果,奈福泮、氨氯地平、西酞普兰能达到基线分离。本文为蛋白质亲和毛细管电色谱整体柱的制备和应用提供了新的思路和方法。  相似文献   

12.
Plasmid DNA (pDNA) is purified directly from alkaline lysis-derived Escherichia coli (E. coli) lysates by phenyl boronate (PB) chromatography. The method explores the ability of PB ligands to bind covalently, but reversibly, to cis-diol-containing impurities like RNA and lipopolysaccharides (LPS), leaving pDNA in solution. In spite of this specificity, cis-diol free species like proteins and genomic DNA (gDNA) are also removed. This is a major advantage since the process is designed to keep the target pDNA from binding. The focus of this paper is on the study of the secondary interactions between the impurities (RNA, gDNA, proteins, LPS) in a pDNA-containing lysate and 3-amino PB controlled pore glass (CPG) matrices. Runs were designed to evaluate the role of adsorption buffer composition, feed type (pH, salt content), CPG matrix and sample pretreatment (RNase A, isopropanol precipitation). Water was chosen as the adsorption buffer over MgCl(2) solutions since it maximised pDNA yield (96.2±4.9%) and protein removal (61.3±3.0%), while providing for a substantial removal of RNA (65.5±3.5%) and gDNA (44.7±14.1%). Although the use of pH 3.5 maximised removal of impurities (~75%), the best compromise between plasmid yield (~96%) and RNA clearance (~60-70%) was obtained for a pH of 5.2. Plasmid yield was maximal (>96%) when the concentration of acetate and potassium ions in the incoming lysate feed were 1.7 M and 1.0 M, respectively. The pre-treatment of lysates with RNase A deteriorated the performance since the resulting oligoribonucleotides lack the cis-diol group at their 3' termini. Overall, the results support the idea that charge transfer interactions between the boron atom at acidic pH and electron donor groups in the aromatic bases of nucleic acids and side residues of proteins are responsible for the non-specific removal of gDNA, RNA and proteins.  相似文献   

13.
The affinity isolation of pre-purified plasmid DNA (pDNA) from model buffer solutions using native and poly(ethylene glycol) (PEG) derivatized zinc finger-GST (Glutathione-S-Transferase) fusion protein was examined in PEG-dextran (DEX) aqueous two-phase systems (ATPSs). In the absence of pDNA, partitioning of unbound PEGylated fusion protein into the PEG-rich phase was confirmed with 97.5% of the PEGylated fusion protein being detected in the PEG phase of a PEG 600-DEX 40 ATPS. This represents a 1322-fold increase in the protein partition coefficient in comparison to the non-PEGylated protein (Kc = 0.013). In the presence of pDNA containing a specific oligonucleotide recognition sequence, the zinc finger moiety of the PEGylated fusion protein bound to the plasmid and steered the complex to the PEG-rich phase. An increase in the proportion of pDNA that partitioned to the PEG-rich phase was observed as the concentration of PEGylated fusion protein was increased. Partitioning of the bound complex occurred to such an extent that no DNA was detected by the picogreen assay in the dextran phase. It was also possible to partition pDNA using a non-PEGylated (native) zinc finger-GST fusion protein in a PEG 1000-DEX 500 ATPS. In this case the native ligand accumulated mainly in the PEG phase. These results indicate good prospects for the design of new plasmid DNA purification methods using fusion proteins as affinity ligands.  相似文献   

14.
With the developed on-line trapping/cHILIC/MS analytical platform, the detection limits of RNA modifications of m6A and 5-mC can reach to 0.06 fmol and 0.10 fmol. We then investigated the contents of m6A and 5-mC in human blood RNA from healthy persons at the age of 6-14 and 60-68 years. Our results showed that both m6A and 5-mC contents were significantly decreased in elder persons, suggesting the RNA modifications of m6A and 5-mC are correlated to aging.  相似文献   

15.
Wang S  Li D  Hua Z  Zhao M 《The Analyst》2011,136(18):3672-3679
We report a novel method for simultaneous determination of cyromazine and melamine based on a molecularly imprinted monolith on-line coupled with high performance liquid chromatography (HPLC). The imprinted monolith was prepared by in situ polymerization using 2,4-diamino-6-undecyl-1,3,5-triazine (DAUTA) as a mimic template. Due to the better solubility of DAUTA in chloroform, hydrogen bonds were effectively developed between the template and the functional monomer and resulted in the formation of highly specific cavities in the obtained imprinted monolith. With methanol as the loading solvent, cyromazine and melamine were both selectively retained by the obtained imprinted monolith, while the nonspecific adsorption on the non-imprinted monolith was negligible. The imprinted monolithic column was on-line coupled with HPLC for purification and concentration of the two analytes from milk samples. To minimize the peak broadening during the on-line transfer of the analytes from the imprinted monolith to the following analytical column, a successive desorption program was developed for the elution step, which enabled on-line stacking of the target compounds before being analyzed by HPLC. Low detection limits of 0.12 μg mL(-1) for melamine and 0.05 μg mL(-1) for cyromazine were achieved with only 0.3 mL of milk sample and a low sensitivity HPLC-UVD instrument. The method may be further extended to detect other analytes of interest in a large variety of samples.  相似文献   

16.
Boronate affinity chromatography (BAC) is an important tool for specific capture and separation of cis-diol-containing compounds such as glycoproteins, RNA and carbohydrates. Only a few reports on monolithic column-based BAC have appeared. In this paper, boronate functionalized monolithic capillary column was synthesized by in situ free radical polymerization for the first time. The prepared column was first characterized in terms of morphology, pore properties, capacity and retention mechanisms. The column exhibited uniform open channel network and high capture capacity. Systematical investigation on the retention mechanism revealed that multiple intermolecular interactions occur between the analytes and the boronate affinity monolith, including boronate affinity, reversed-phase, cation-exchange and hydrogen bonding interactions, depending on the conditions used. In addition, the presence of Lewis base such as fluoride ion in the mobile phase was found to be favorable to the complexation between cis-diol-containing compounds with the boronic acid ligand under less basic conditions. On the basis of these fundamental investigations, the prepared monolithic column was then applied to the capture of adenosine and flavin adenine dinucleotide. The investigations in this study provide sound understanding not only on how to manipulate the separation selectivity through selection of appropriate mobile phase composition on the currently prepared columns but also on how to design next-generation columns with desired properties and functions.  相似文献   

17.
This paper summarizes the critical examination of the hydrodynamic performance of the NBG expanded bed contactor operated with streamline-DEAE adsorbent under various operating conditions for expanded bed adsorption of plasmid DNA nanoparticles from alkaline lysate. The purification process is not RNase-free. In this study, a rapid and efficient scaleable purification protocol obtaining, plasmid DNA nanoparticles (average size of 40 nm) with a high purity level for use as therapeutic agent in customized NBG expanded bed columns was developed. This technique allows efficient levels of binding to the column media and vector purification without centrifugation or filtration steps. Residence time distribution (RTD) studies were exploited to achieve the optimal condition of plasmid DNA nanoparticle (pDNA) recovery upon anion exchange adsorbent in this contactor. In addition, the purification experiments were carried out in the expanded bed columns with settle bed height of 6.0 ± 0.2 cm. NaCl gradient elution enabled the isolation of supercoiled plasmid from low-Mr RNA, cDNA and plasmid variants. Subsequently dynamic binding capacity of the adsorbent was calculated while these values decreased with increase in flow velocity. Moreover, the effect of pH upon the performance of this recovery process and the feedstock volume upon the expanded bed anion exchange purification was investigated. The results demonstrated that separation of low-Mr RNA from plasmid DNA isoforms in the range of pH between 5.5 and 7.5 is achievable in this column. The yield of recovery of pDNA in optimal condition was higher than 88.51% which was a superior result in one-pass frontal chromatography. The generic application of simple customized NBG expanded bed column and its potential for the purification and recovery of plasmid DNA as a nanoparticulate bioproduct is strongly discussed.  相似文献   

18.
Histidine-tagged lentiviral vectors were separated from crude cell culture supernatant using labscale monolithic adsorbents by immobilized metal affinity chromatography. The capture capacity, concentration factor, purification factor, and elution efficiency of a supermacroporous cryogel monolith were evaluated against the BIA Separations convective interaction media (CIM) disc, which is a commercial macroporous monolith. The morphology of the polymeric cryogel material was characterised by scanning electron microscopy. Iminodiacetic acid was used as the metal chelating ligand in both monoliths and the chelating capacity for metal ions was found to be comparable. The CIM-IDA-Ni(2+) adsorbent had the greatest capture capacity (6.7 x 10(8) IU/ml of adsorbent), concentration factor (1.3-fold), and elution efficiency (69%). Advantages of the cryogel monoliths included rapid, low pressure processing as well low levels of protein and DNA in the final purified vector preparations.  相似文献   

19.
欧俊杰  林辉  刘哲益  张振宾  董靖  邹汉法 《色谱》2013,31(4):322-328
本文采用自由基聚合法原位制备了两种杂化毛细管整体柱。首先以含有一个甲基丙烯酸基团的多面体低聚倍半硅氧烷(POSS)试剂(Bu-POSS)为单体、以含有多个甲基丙烯酸基团的POSS试剂(POSS-MA)为交联剂在二元致孔剂(正丙醇/聚乙二醇400)和引发剂(偶氮二异丁腈)存在下发生热引发聚合,在毛细管中形成聚(Bu-POSS-co-POSS-MA)杂化整体柱;另外仅以POSS-MA为单体在相同条件下制备聚(POSS-MA)杂化整体柱,并将这两种杂化整体柱应用于小分子的毛细管液相色谱(cLC)分析。结果表明,含POSS杂化整体柱具有制备简单、重现性好以及稳定性高的特点。此外,利用聚(POSS-MA)杂化整体柱表面剩余的甲基丙烯酸基团,可以将功能单体(甲基丙烯酸硬脂酸酯等)化学键合到整体柱上,不但可以提高色谱柱效,而且使其具有不同的选择性。本文所发展的以POSS试剂为原料采用自由基聚合法制备杂化整体柱的方法为新型杂化整体柱的制备提供了一种新思路。  相似文献   

20.
High-performance monolith affinity chromatography employing protein A resins has been introduced previously for the fast purification of IgG from different sources. Here we describe the design and evaluation of a fast and specific method for quantitation of IgG from purified samples as well as crude supernatant from Chinese hamster ovary (CHO) cells. We used a commercially available affinity monolith with protein A as affinity ligand (CIM protein A HLD disk). Interferences of CHO host cell proteins with the quantitation of IgG from CHO supernatant were eliminated by a careful choice of the equilibration buffer. With this method developed, it is possible to quantify IgG within 5 min in a concentration range of 23-250 microg/ml. The calibration range of the method could be extended from 4 to 1000 microg/ml by adjusting the injection volume. The method was successfully validated by measuring the low limit of detection and quantification, inter- and intra-day precision and selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号