首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Only a single type of circular circumferential crack is conventionally reported for poly(l-lactic acid) (PLLA). In this study, PLLA samples were found to exhibit as many as four crack types of different directions and patterns, which cannot be feasibly explained simply by the directional difference in coefficients of thermal expansion. Depending on crystallization temperature (T c), PLLA crystallizes into ringless or ring-banded spherulites, whereas the crack patterns are dramatically different in these two types of spherulites. In ring-banded spherulites of PLLA crystallized at intermediate T c, two uniquely different crack types are present: (1) twin circumferential cracks coinciding with the dark–bright and bright–dark boundary and (2) radial short-segmental voids coinciding on the bright bands in spherulites. The radial short-segmental cracks on the bright band of ring-banded spherulites may be caused by PLLA crystals of radial direction with various twisting that contract laterally upon cooling. Only circumferential cracks are present in PLLA crystallized into ringless spherulites, where concentric continuous circumferential cracks are present in the ringless spherulites at low T c with finer lamellae, but discontinuous and irregular circumferential cracks are present in the ringless spherulites at high T c with coarse lamellae. Although all cracks are triggered by cooling from T c, all evidences indicate that the crack patterns and types are highly associated with the lamellar orientation, patterns, and coarseness in spherulites.  相似文献   

2.
Surface morphology of positively or negatively birefringent spherulites in melt-crystallized neat poly(ethylene adipate) (PEA) vs. PEA blend with phenoxy was examined using atomic force microscopy (AFM), scanning electron microscopy, polarizing optical microscopy, thermal analysis, and wide-angle X-ray techniques. Their top-surface morphology in thin film forms was analyzed to fully expounded the lamellar assembly responsible for the opposite birefringence. Top-surface lamellar assemblies in positive/negative types of ringless spherulites (T c = 0, 15, 20, 40 °C) and also alternating birefringence of double-ring-banded spherulite (T c = 28 °C) of PEA/phenoxy blend were examined with AFM. From the results, spherulite’s positive and negative birefringence differs only in interior lamellar arrangements but not lattice geometries. Negative spherulites are composed of radially oriented edge-on lamellae, while positive spherulites are composed of bending/coiling edge-on lamellae. By contrast, the ring-banded spherulites can exhibit both negative and positive birefringence depending on the alternating radial and tangential lamellar arrangement. The addition of phenoxy into PEA could disrupt the regular lamellar bending and promote the singularity of edge-on lamellae; owing to that, the amorphous phenoxy induces looser arrangement of edge-on lamellae with phenoxy being in interlamellar/interfibrillar regions. The bulky linking pendent group phenoxy, with H-bonding capacity interacting with PEA, also disrupts the regularity of tangential–radial PEA lamellae to display a more zigzag pattern.  相似文献   

3.
Thermal behavior and phase behavior in blends of liquid crystalline poly(aryl ether ketone) with lateral methoxy groups (M-PAEK) and poly(aryl ether ether ketone) containing thioether units (S-PEEK) have been investigated by differential scanning calorimetry (DSC) and polarized light microscopy (PLM) techniques. The results indicate that the composition of the blends has great effect on the phase behavior and morphology. Thin films of pure M-PAEK and S-PEEK crystallized from the melts exhibit typical mosaic and spherulitic structures, respectively. For the blends with higher M-PAEK contents (> 50%), an unusual ring-banded spherulite with structural discontinuity is formed. The bright core and rings of the ring-banded spherulites under PLM are composed of M-PAEK phase, while the dark rings consist mainly of S-PEEK phase. For the 50:50 M-PAEK/S-PEEK blend, the ring-banded spherulites and S-PEEK spherulites coexist, which implies that a partial phase separation between the two components takes place in the melting state. In S-PEEK-rich blends, a volume-filled spherulite is produced. In addition, the effect of isothermal crystallization temperature on the phase behavior, especially the ring-banded spherulite formation in the blends, is discussed.  相似文献   

4.
在不同的共混比例、不同的结晶温度下对不相容PHBV/PS、PHBV/PMMA结晶/非晶共混体系的结晶行为做了系统的研究.研究发现当PHBV含量为75wt%时,共混体系仍然和纯PHBV一样生成环带球晶;而当PHBV含量为50wt%时,共混体系在略低于非晶组分玻璃化转变温度时呈现花瓣状的球晶形貌;当PHBV含量为25wt%时,PHBV/PS体系出现不规则的晶体形貌,而PHBV/PMMA体系在偏光显微镜下没有观察到晶体.在这种不相容共混体系中,非晶组分的分散状态以及共混比例对共混体系中PHBV环带球晶的形成起到决定性的作用,而非晶组分对PHBV球晶的片晶前端生长的影响是形成花瓣状球晶的主要原因.  相似文献   

5.
Crystallization behavior of blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(1,2-propandiolcarbonate) (PR(CO2)) has been investigated by polarized light microscopy (PLM). The spherulite growth rates (SGR) of all blends were faster than that of pure PHBV, and the spherulite growth rates of PHBV in the PHBV/PR(CO2) blends reduced with increasing PR(CO2) weight fraction. There are two melting peaks in both the pure PHBV and the PHBV/PR(CO2) blends. The melting peak of PHBV/PR(CO2) blends was reduced by lower temperature about 20K as compared to PHBV and the higher temperature melting peak was increased by about 10K in the blends.  相似文献   

6.
The effects of the lamellar growth direction, extinction rings, and spherulitic boundaries of poly(butylene succinate) (PBSU) on the spherulitic growth of poly(ethylene oxide) (PEO) were investigated in miscible blends of the two crystalline polymers. In the crystallization process from a homogeneous melt, PBSU first developed volume‐filling spherulites, and then PEO spherulites nucleated and grew inside the PBSU spherulites. The lamellar growth direction of PEO was identical with that of PBSU even when the PBSU content was about 5 wt %. PEO, which intrinsically does not exhibit banded spherulites, showed apparent extinction rings inside the banded spherulites of PBSU. The growth rate of a PEO spherulite, GPEO, was influenced not only by the blend composition and the crystallization temperature of PEO, but also by the growth direction with respect to PBSU lamellae, the boundaries of PBSU spherulites, and the crystallization temperature of PBSU, TPBSU. The value of GPEO first increased with decreasing TPBSU when a PEO spherulite grew inside a single PBSU spherulite. Then, GPEO decreased when TPBSU was further decreased and a PEO spherulite grew through many tiny PBSU spherulites. This behavior was discussed based on the aforementioned factors affecting GPEO. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 539–547, 2009  相似文献   

7.
The effect of a small amount of poly(ethylene naphthalate) (PEN) in its blends with poly(trimethylene terephthalate) (PTT) on isothermal melt-crystallization kinetics and spherulitic morphology of the blends was thoroughly investigated. The maximum PEN content in the blends was 9 wt%. Due to the single composition-dependent glass transition temperature (Tg) that was observed for each blend, these blends appeared to be miscible in the amorphous state. After isothermal crystallization from the melt state, the neat PTT and its blends with PEN exhibited either double or triple melting endotherms. The triple endothermic peaks were observed in both the neat PTT and the blends when being crystallized at crystallization temperatures (Tc) of less than or equal to 195 °C. The equilibrium melting temperature () for the neat PTT was determined based on the linear Hoffman–Weeks extrapolative method to be 248 °C. Such values for the blends were found to decrease with the addition and increasing amount of PEN. Both the neat PTT and the blends were isothermally crystallized over the Tc range of 190–205 °C. At a given Tc, the 97PTT/3PEN blend exhibited a half-time of crystallization (t0.5) value that was lower, while it exhibited reciprocal half-time (), Avrami rate constant (KA), and spherulitic growth rate (G) values that were greater, than those of the neat PTT. With further increase in the PEN content, the t0.5 value increased, while the , KA, and G values decreased. Analysis of the G values based on the Lauritzen–Hoffman's (LH) secondary nucleation theory showed that the neat PTT and the 91PTT/9PEN blend exhibited a regime II→III transition at 194 °C (467.2 K), while no regime transition was observed for the other two blends. The lateral and the fold surface free energies (σ and σe) and the work of chain folding (q) for the neat PTT and the blends were 19.4, 30.2–46.3 erg cm−2, and 2.4–3.6 kcal mol−1, respectively. Lastly, the effect of both the Tc and the PEN content on morphology and texture of the PTT spherulites was also investigated and the results showed that the texture of the spherulites became coarser with increasing Tc and PEN content.  相似文献   

8.
Using in‐house synthesized poly(dodecamethylene terephthalate) (P12T) as a model, periodic extinction‐banded spherulites melt‐crystallized at high Tcs (100–115 °C) are expounded in terms of growth mechanism. The extinction‐banded spherulites wildly differing from the usual blue/orange double ring‐banded spherulites are composed of all flat‐on discrete single‐crystalline lamellae packed like roof shingles (or fish scales) along the circularly curved bands and the lamellae in the extinction bands are flat with a lozenge shape with no continuous twisting at all. For P12T films of more than 10 µm crystallized at Tc = 105–115 °C, no periodic bands were seen, and all spherulites were ringless, where periodic growth precipitation of crystals to extinction does not occur until impingement. Extinction bands in the P12T spherulites with the inter‐ring spacing steadily decrease with decreasing film thickness, because for thinner films (submicrons to 2 µm), draining or depletion of available molten species takes place more frequently, leading to bands of smaller inter‐ring spacing. The petal‐like extinction bands are discussed and analyzed in detail using 3D AFM imaging. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 601–611  相似文献   

9.
A miscibility and phase behavior study was conducted on poly(ethylene glycol) (PEG)/poly(l ‐lactide‐ε‐caprolactone) (PLA‐co‐CL) blends. A single glass transition evolution was determined by differential scanning calorimetry initially suggesting a miscible system; however, the unusual Tg bias and subsequent morphological study conducted by polarized light optical microscopy (PLOM) and atomic force microscopy (AFM) evidenced a phase separated system for the whole range of blend compositions. PEG spherulites were found in all blends except for the PEG/PLA‐co‐CL 20/80 composition, with no interference of the comonomer in the melting point of PEG (Tm = 64 °C) and only a small one in crystallinity fraction (Xc = 80% vs. 70%). However, a clear continuous decrease in PEG spherulites growth rate (G) with increasing PLA‐co‐CL content was determined in the blends isothermally crystallized at 37 °C, G being 37 µm/min for the neat PEG and 12 µm/min for the 20 wt % PLA‐co‐CL blend. The kinetics interference in crystal growth rate of PEG suggests a diluting effect of the PLA‐co‐CL in the blends; further, PLOM and AFM provided unequivocal evidence of the interfering effect of PLA‐co‐CL on PEG crystal morphology, demonstrating imperfect crystallization in blends with interfibrillar location of the diluting amorphous component. Significantly, AFM images provided also evidence of amorphous phase separation between PEG and PLA‐co‐CL. A true Tg vs. composition diagram is proposed on the basis of the AFM analysis for phase separated PEG/PLA‐co‐CL blends revealing the existence of a second PLA‐co‐CL rich phase. According to the partial miscibility established by AFM analysis, PEG and PLA‐co‐CL rich phases, depending on blend composition, contain respectively an amount of the minority component leading to a system presenting, for every composition, two Tg's that are different of those of pure components. © 2013 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2014 , 52, 111–121  相似文献   

10.
The crystallization behavior of poly(d-lactide) loaded with xylan propionate (XylPr) and xylan butyrate (XylBu) was investigated. Non-isothermal crystallization study revealed that the crystallization temperature (Tc) of PDLA decreased by almost 30 °C when loaded with 1% XylPr or XylBu. PDLA blends containing 0.1% xylan ester produced similar results. Isothermal crystallization study suggests faster rate of crystallization of the PDLA blends as indicated by their t1/2 values. The Xc values of the PDLA blends were also higher as compared to neat PDLA. However, the PDLA blends still possessed lower degrees of haze due to the presence of smaller spherulites. Based on TMA, PDLA blends exhibited better thermal stability than neat PDLA.  相似文献   

11.
Isothermal crystallization of poly(butylene terephthalate) (PBT) blended with oligomeric poly(ε‐caprolactone) (PCL) is investigated by polarized optical microscopy and differential scanning calorimetry at various temperatures (Tc). The growth rate of PBT spherulites is found to depend on time (t), as the spherulite radius (r) linearly increases with t at the early stages of crystallization (rt), then, with the progress of phase transition, the spherulite radius becomes dependent on the square root of the time (rt1/2) until termination of crystal growth. The nonlinear advance of the crystal growth front is caused by a varied composition of the melt phase in contact with the growing crystals, due to diffusion of mobile PCL chains away from the spherulite surface. The melt phase becomes spatially inhomogeneous, causing self‐deceleration of PBT crystallization until a limit composition that prevents further crystallization is reached in the melt. The maximum crystallinity achievable during isothermal crystallization decreases with Tc. The lowering of the temperature after termination of the isothermal crystallization allows to complete the crystal growth, but the final developed crystallinity still depends on Tc, being lower at higher Tcs. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3148–3155, 2007  相似文献   

12.
Thin films of a polyester of lactic and glycolic acid were prepared to give controlled amounts of disk spherulites. The spherulite contents ranged from zero to 100% and were accurately measured. The stress-strain properties of the films were then determined at 60°C, i.e., about 20°C above the glass transition temperature Tg. The mechanical behavior varied quite systematically with spherulite content and displayed little dependence on spherulite size. It was found that much of the mechanical data could be reasonably well described by a simple composite model. In addition, the yield strain as well as the strain to break could be principally coupled to the deformation of only the amorphous phase. SEM and optical microscopy studies supported the above conclusion, also demonstrating that the isolated spherulites adhered well to the amorphous matrix and behaved as stress concentrators in the system when the deformation temperature was above Tg.  相似文献   

13.
李慧慧 《高分子科学》2012,30(2):269-277
The effect of PBS on the morphological features of PVDF has been investigated by optical and atomic force microscopies under various conditions.It was found that neat PVDF forms largeγform spherulites with extraordinarily weak birefringence at 170℃.Adding 30%PBS makes PVDF exhibit intrigued flower-like spherulitic morphology.The growth mechanism was explained by the decrease of the supercooling and the materials dissipation.Increasing the PBS content to 70%favors the formation of ring banded spherulites.Temperature dependent experiments verify theα→γphase transition occurs from the junction sites of theαandγcrystals,while starts from the centers ofαspherulites in the blends.Ring banded structures could be observed in neat PVDF,70/30 blend and 30/70 blend when crystallized at 155℃,withoutγcrystals.The band period of PVDFαspherulites increases with crystallization temperature as well as the amount of PBS content.At 140℃,spherulites in neat PVDF lose their ring banded feature,while coarse spherulites consisting of evident lamellar bundles could be found in 30/70 blend.  相似文献   

14.
The crystallization process of poly(ethylene oxide) (PEO)/poly(methyl methacrylate) (PMMA)and PEO/poly(vinyl acetate) (PVAc) blends has been characterized by Fourier Transform Infrared(FTIR) spectra in conjunction with Differential Scanning Calorimeter (DSC) measurements. Thecrystallinity of PEO varies consistently with PEO content in PEO/PVAc blends and the PEO/PMMAblends containing 50 wt% or less PMMA. For the PEO/PMMA blends containing 60 wt% ormore PMMA, the crystallinity of PEO decreases more than PEO content but develops with crystal-lization time. These results can be explained in terms of difference between the crystallization tem-perature (T_c) and glass transition temperature (T_g) of the blends as a function of content of amorphouscomponent.  相似文献   

15.
Miscible blends of three crystalline polymers, namely poly(butylene succinate) (PBS), poly(ethylene succinate) (PES), and poly(oxyethylene) (POE), exhibited interpenetrating spherulites, where a spherulite of one component grows inside the spherulites of other components. PBS and PES were immiscible above the melting points, Tm, of these substances, while ternary blends with POE showed miscibility, which depended on the molecular weight of POE. PBS and PES exhibited the same spherulitic growth process as in a miscible binary blend when they were crystallized from a homogeneous ternary melt. Spherulites of PBS, which is the highest‐Tm component, filled the whole volume first when a miscible ternary blend was quenched below Tm of POE, the lowest‐Tm component. Then, the blends showed either two types of crystallization processes. One was successive nucleation and growth of PES and POE spherulites, that is, PES nucleated and developed spherulites inside the PBS spherulites and then POE spherulites grew inside the interlocked spherulites of PBS and PES. The other was simultaneous growth and the formation of interpenetrating spherulites of PES and POE inside the PBS spherulites. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 706–711, 2010  相似文献   

16.
The blend system containing a poly(vinylidene fluoride/trifluoroethylene) [P(VDF/TrFE)] copolymer (68/32 mol %) and poly(vinyl acetate) (PVAc) was miscible from the results of differential scanning calorimetry (DSC) studies that exhibit the presence of a single, composition‐dependent glass transition temperature (Tg) and a strong melting point depression for the semicrystalline P(VDF/TrFE) component. However, differences between the DSC and dielectric measurements, which showed a separate P(VDF/TrFE) Tg peak, suggests that the P(VDF/TrFE)/PVAc blends are actually partially miscible. Because of the lower dielectric constant of PVAc and the reduced sample crystallinity caused by the addition of PVAc, both the dielectric constant and the remanent polarization of the copolymer blends decrease with increasing PVAc content. The presence of a small amount of PVAc stabilized the anomalous ferroelectric behavior of ice–water‐quenched P(VDF/TrFE), and the blend portrayed normal polarization reversal behavior after adding only 1 wt % PVAc. The piezoelectric response suggests small changes with an increasing number of poling cycles. It is believed that PVAc affects the DE hysteresis behavior at the interface between crystalline and amorphous phases, although much work remains to be done to confirm this hypothesis. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 927–935, 2003  相似文献   

17.
Summary The sorption property of water vapor by poly(vinyl acetate) (PVAc) of relatively low glass transition temperature (T g) was studied at temperatures nearT g.Tcg of humidity-controlled samples of various moisture contents was measured and its variation with the moisture content was determined.T g of the dry sample was estimated by dilatometry and DSC methods, and to confirm the value, the temperature dependence of mutual diffusion coefficient of the system of water vapor + PVAc was determined. A difference between the sorption mechanisms of water vapor by PVAc at 20 and 30 °C was observed: two sorption mechanisms are involved at 30 °C, while three mechanisms at 20 °C are involved which include the above two and another intermediate one. In earlier stage of sorption, at both 20 and 30 °C, water molecules sorbed by PVAc showed a tendency towards aggregation, while a mixing effect was found at higher stage of the sorption.
Zusammenfassung In der Arbeit werden Wasserdampfsorptionseigenschaften von Polyvinylacetat mit relativ niedriger Glastemperatur (T g) in der Nähe vonT g untersucht. Es wurden Plastizitätseinflüsse und Veränderungen vonT g mit dem Wassergehalt studiert. Es wurde gefunden, daß bei 30 °C ein 2-Stufen-Sorptionsmechanismus, bei 20 °C ein 3-Stufen-Mechanismus existiert.


With 7 figures  相似文献   

18.
Upon crystalline solidification of one component in a homogeneously molten polymer blend, composition profiles develop outside (i.e., in the rest melt) and behind (i.e., within the spherulites) the crystal growth front. The present article is devoted to the detailed verification and the interpretation of these distributions and their temporal development inside growing spherulites. To this end, the energy dispersive X‐ray emission (EDX) of suitable elements has been recorded locally resolved in a scanning electron microscope and evaluated correspondingly. The investigations were performed at the melt homogeneous blend of poly(vinylidene fluoride) (PVDF) as crystallizing and poly(methyl methacrylate) (PMMA) as steadily amorphous component. If the spherulites are not volume filling, the mean PMMA content 〈?PMMA〉 inside the PVDF spherulites is for all blends about 0.2 below the starting composition. ?PMMA increases however slightly from the center of a spherulite to its border. That increase reflects the PMMA concentration in front of the spherulite surface, which increases likewise with time, and is clearly above the initial composition. There is at the spherulite surface, consequently, a remarkable jump in composition from the spherulite internal to its amorphous surroundings. It may amount up to 0.5. With volume filling spherulites, a slight variation of the composition from the center of a spherulite to its border is observed, too. This proves that also at these conditions composition profiles develop in the spherulite's surroundings. They remain however so weak that they do not inhibit crystallization even in its later stages. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 338–346, 2006  相似文献   

19.
Diglycidyl ether of bisfenol-A (DGEBA)/poly(vinyl acetate) (PVAc)/poly(4-vinyl phenol) brominated (PVPhBr) ternary blends cured with 4,4’-diaminodiphenylmethane (DDM) were investigated by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA) and scanning electron microscopy (SEM). Homogeneous (DGEBA+DDM)/PVPhBr networks with a unique T g are generated. Ternary blends (DGEBA+DDM)/PVAc/PVPhBr are initially miscible and phase separate upon curing arising two T gs that correspond to a PVAc-rich phase and to epoxy network phase. Increasing the PVPhBr content the T gof the PVAc phase move to higher temperatures as a consequence of the PVAc-PVPhBr interactions. Different morphologies are generated as a function of the blend composition.  相似文献   

20.
Composition profiles develop around growing PVDF spherulites in a blend with PMMA. These profiles assume stationary courses after a certain crystallization time provided that the overall degree of crystallinity is not too high. The composition-dependent growth rate and the diffusion-controlled remove of the surplus PMMA from the spherulite surface are then in a stationary equilibrium. The internal structure of the spherulites will then be homogeneous, too. Upon isothermal crystallization of a PVDF/PMMA = 60/40 (wt %) blend at 160°C for at least 4 h, the spherulites internal degree of crystallinity xc as related to the PVDF fraction obeys the inequality 55 wt % ≤ xc ≤ 84 wt %. The overall PMMA content within the spherulites as averaged over its whole inside has been determined by IR microscopy. It amounts to about 15 wt %. In contrast, the PMMA content of the amorphous phase within the spherulites (averaged again over its whole inside) ranges between 28 and 52 wt %. This composition jumps at the spherulite surface to 52 wt %. From the slope of the composition profiles outside the spherulites that have a width of more than 50 μm, the effective chain diffusion coefficient in blends as averaged over both components can be calculated to amount to (250 ± 100) μm2h−1. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2923–2930, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号