首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellulolytic enzyme production was studied in an aqueous twophase system, PEG 8000 5%-Dextran 7%, withTrichoderma reesei Rutgers C30 in a 7L fermentor. In batch cultivations, an average of 2.5 filter paper units (FPU)/mL were obtained in the top phase. In cultiva tions in regular media without polymers, the same enzyme concen tration was obtained. The enzyme yield was 205 FPU/g cellulose in the phase system, and 259 FPU/g cellulose in the regular medium. An extractive fed-batch cultivation was maintained in the aqueous twophase system for 360 h. The enzyme containing top phase was with drawn after phase separation. New cellulose substrate and nutrients were added with the new top phase. The enzyme extraction was started after 120 h of cultivation, and was repeated every 72 h. The total substrate concentration was 40 g/L. A maximum enzyme concentration of 4.8 FPU/mL was obtained in the withdrawn cell-free top phase. The enzyme yield was 148 FPU/g cellulose.  相似文献   

2.
The production cost of cellulolytic enzymes is a major contributor to the high cost of ethanol production from lignocellulosics using enzymatic hydrolysis. The aim of the present study was to investigate the cellulolytic enzyme production ofTrichoderma reesei Rut C 30, which is known as a good cellulase secreting micro-organism, using willow as the carbon source. The willow, which is a fast-growing energy crop in Sweden, was impregnated with 1–4% SO2 and steam-pretreated for 5 min at 206°C. The pretreated willow was washed and the wash water, which contains several soluble sugars from the hemicellulose, was supplemented with fibrous pretreated willow and used for enzyme production. In addition to sugars, the liquid contains degradation products such as acetic acid, furfural, and 5-hydroxy-methylfurfural, which are inhibitory for microorganisms. The results showed that 50% of the cellulose can be replaced with sugars from the wash water. The highest enzyme activity, 1.79 FPU/mL and yield, 133 FPU/g carbohydrate, was obtained at pH 6.0 using 20 g/L carbon source concentration. At lower pHs, a total lack of growth and enzyme production was observed, which probably could be explained by furfural inhibition.  相似文献   

3.
Cellulase production by the RUT-C30 mutant of the fungusTrichoderma reesei was studied on mixtures of xylose and cellulose. In mixed substrates, the lag phase of the growth cycle was shorter and reached the maximum of total productivity in a shorter time compared to growth on the single substrate, cellulose. A diauxic pattern of utilization of the two carbon sources was observed as well: Xylose was utilized first to support growth, followed by cellulose to induce the cellulase enzyme production and provide an additional carbon source for cellular metabolism. Of the various mixtures of xylose and cellulose used in batch enzyme production, a ratio of 30∶30 g/L of xylose to cellulose was optimal. This mixture produced the highest maximal enzyme productivity of 122 IFPU/L h, and its total productivity reached a maximum value of 55 IFPU/L h in less time than others. However, similar total productivities and higher enzyme titers were observed for growth on cellulose alone.  相似文献   

4.
The use of the intensive mass transfer reactor (IMTR) for enzymatic saccharification of cellulose, where the reaction mixture is intensively stirred by ferromagnetic particles (FMP), enhances the process rate and productivity drastically. The most significant enhancement of the process was observed when microcrystalline cellulose was used as a substrate. A concentration of sugars up to 5% was obtained after 1 h of cellulose hydrolysis using a cellulase activity level of 2 filter paper units (FPU)/mL (20 FPU/g substrate). In the hydrolysis of two types of industrial cellulosic wastes, the enhancement effects were less pronounced. Parameters related to the IMTR design, such as the shape, dimensions, and mass of FMP, as well as the magnetic field strength, strongly affected the process of hydrolysis. Among various kinds of FMP tested, the most efficient were found to be cylindrical particles (0.25 x 4 mm). In general, the hydrolysis rate enhanced when the magnetic field strength increased from 26,000 to 64,000 A/m. An optimal FMP loading existed at each level of the field strength. Hydrolyzates obtained in the IMTR under the action ofTrichoderma reesei andPenicillium verruculosum cellulases contained glucose and cellobiose as soluble products, cellobiose being predominant (> 50%). Only when a high level of extra Β-glucosidase was added to the IMTR (10 CBU/mL), did glucose made up more than 90% of the products. Owing to extreme shear conditions in the IMTR, significant enzyme inactivation took place.  相似文献   

5.
Brewer’s spent grain components (cellulose, hemicellulose and lignin) were fractionated in a two-step chemical pretreatment process using dilute sulfuric acid and sodium hydroxide solutions. The cellulose pulp produced was hydrolyzed with a cellulolytic complex, Celluclast 1.5 L, at 45 °C to convert the cellulose into glucose. Several conditions were examined: agitation speed (100, 150 and 200 rpm), enzyme loading (5, 25 and 45 FPU/g substrate), and substrate concentration (2, 5 and 8% w/v), according to a 23 full factorial design aiming to maximize the glucose yield. The obtained results were interpreted by analysis of variance and response surface methodology. The optimal conditions for enzymatic hydrolysis of brewer’s spent grain were identified as 100 rpm, 45 FPU/g and 2% w/v substrate. Under these conditions, a glucose yield of 93.1% and a cellulose conversion (into glucose and cellobiose) of 99.4% was achieved. The easiness of glucose release from BSG makes this substrate a raw material with great potential to be used in bioconversion processes.  相似文献   

6.
Researchers studying cellulase enzymes for the economical production of fuel ethanol envision cellulose as the carbon source. However, submerged Trichoderma reesei cultures grown on cellulose exhibit high run-to-run variability. Thus, an investigation of 30 batch cellulase production experiments was instrumental in determining fermentation conditions that improved enzyme titers, yields, and productivities. Eighteen of the 30 batch experiments experienced minimal process upsets and were classified into eight groups based on agitation rate, gas sparge rate, and the use of oxygen supplementation. Comparing corn steep liquor with yeast extract/peptone also tested the effect of different sources of nitrogen in the media. Average 7-d enzyme titers were doubled from 4 to 8 FPU/mL primarily by increasing aeration.  相似文献   

7.
Corn stover is an abundant, promising raw material for fuel ethanol production. Although it has a high cellulose content, without pretreatment it resists enzymatic hydrolysis, like most lignocellulosic materials. Wet oxidation (water, oxygen, mild alkali or acid, elevated temperature and pressure) was investigated to enhance the enzymatic digestibility of corn stover. Six different combinations of reaction temperature, time, and pH were applied. The best conditions (60g/L of corn stover, 195°C, 15 min, 12 bar O2, 2 g/L of Na2CO3) increased the enzymatic conversion of corn stover four times, compared to untreated material. Under these conditions 60% of hemicellulose and 30% of lignin were solubilized, whereas 90% of cellulose remained in the solid fraction. After 24-h hydrolysis at 50°C using 25 filter paper units (FPU)/g of dry matter (DM) biomass, the achieved conversion of cellulose to glucose was about 85%. Decreasing the hydrolysis temperature to 40°C increased hydrolysis time from 24 to 72 h. Decreasing the enzyme loading to 5 FPU/g of DM biomass slightly decreased the enzymatic conversion from 83.4 to 71%. Thus, enzyme loading can be reduced without significantly affecting the efficiency of hydrolysis, an important economical aspect.  相似文献   

8.
This article reports studies concerning the production of penicillin G acylase (PGA) by Bacillus megaterium. This enzyme has industrial use in the hydrolysis of penicillin G to obtain 6-aminopenicillanic acid, an essential intermediate for the production of semisynthetic β-lactam antibiotics. Although most microorganisms produce the enzyme intracellularly, B. megaterium provides extracellular PGA. The enzyme production by microorganisms involves several steps, resulting in a many operational variables to be studied. The study of the inoculum is an important step to be accomplished, before addressing other issues such as culture optimization and downstream processing. In this study, using a standard inoculum as reference, several runs were performed aiming at the definition of operational conditions in the PGA production. Cell concentration and PGA activity in the production medium were measured after 24, 48, and 72 h of the beginning of the production phase. This study encompasses the duration of the inoculum germination phase and the concentration of cells used to startup the germination. Based on these results, PGA productivity during the production phase was maximized. The selected values for these variables were 1.5 × 107 spores/mL of germination medium, germination during 24 h, and 72 h for the production phase.  相似文献   

9.
There is tremendous interest in using agro-industrial wastes, such as cellulignin, as starting materials for the production of fuels and chemicals. Cellulignin are the solids, which result from the acid hydrolysis of the sugarcane bagasse. The objective of this work was to optimize the enzymatic hydrolysis of the cellulose fraction of cellulignin, and to study its fermentation to ethanol using Saccharomyces cerevisiae. Cellulose conversion was optimized using response surface methods with pH, enzyme loading, solid percentage, and temperature as factor variables. The optimum conditions that maximized the conversion of cellulose to glucose, calculated from the initial dried weight of pretreated cellulignin, (43 degrees C, 2%, and 24.4 FPU/g of pretreated cellulignin) such as the glucose concentration (47 degrees C, 10%, and 25.6 FPU/g of pretreated cellulignin) were found. The desirability function was used to find conditions that optimize both, conversion to glucose and glucose concentration (47 degrees C, 10%, and 25.9 FPU/g of pretreated cellulignin). The resulting enzymatic hydrolyzate was fermented yielding a final ethanol concentration of 30.0 g/L, in only 10 h, and reaching a volumetric productivity of 3.0 g/L x h, which is close to the values obtained in the conventional ethanol fermentation of sugar cane juice (5.0-8.0 g/L x h) in Brazil.  相似文献   

10.
Conifers, which are the most abundant biomass species in Nordic countries, USA, Canada and Russia, exhibit strong resistance towards depolymerization by cellulolytic enzymes. At present, it is still not possible to isolate a single structural feature which would govern the rate and degree of enzymatic hydrolysis. On the other hand, the forest residues alone represent an important potential for biochemical production of biofuels. In this study, the effect of substrate properties on the enzymatic hydrolysis of softwood was studied. Stem wood spruce chips were fractionated by SO2–ethanol–water (SEW) treatment to produce pulps of varying composition by applying different operating conditions. The SEW technology efficiently fractionates different types of lignocellulosic biomass by rapidly dissolving hemicelluloses and lignin. Cellulose remains fully in the solid residue which is then treated by enzymes to release glucose. The differences in enzymatic digestibility of the spruce SEW pulp fibers were interpreted in terms of their chemical and physical characteristics. A strong correlation between the residual lignin content of SEW pulp and enzymatic digestibility was observed whereas cellulose degree of polymerization and hemicellulose content of pulp were not as important. For the pulps containing about 1.5 % (w/w) lignin, 90 % enzymatic digestibility was achieved at 10 FPU enzyme charge and 24 h of hydrolysis time.  相似文献   

11.
Sawdust hydrolysates were investigated for their ability to support cell growth and cellulase production, and for potential inhibition of Trichoderma reesei Rut C30. Simultaneous fermentations were conducted to compare the hydrolysate-based media with the controls having equivalent concentrations of glucose and Avicel cellulose. Six hydrolysates differing in the boiling durations in the hydrolysis procedure were evaluated. The hydrolysates were found to support cell growth and induce active cellulase synthesis. The maximum specific cellulase production rate was 0.046 filter paper units (FPU)/(g of cells · h) in the hydrolysate-based systems, much higher than that (0.017 FPU/[g of cells · h]) in the controls.  相似文献   

12.
Twenty different strains of filamentous fungi were initially selected for evaluation of cellulolytic activity using a single test in a simple mineral salts culture medium with filter paper as the only carbon source. Those fungi strains that were capable of completely breaking the filter paper strip within 4–8 d were assayed also for antimicrobial action, using Staphyloccocus a ureus ATCC 6538P according to the so-called agar piece method. We screened three different strains with both capacities: the production of cellulolytic activity and antibiotic action. The experimental results suggest that the fungi Pinicillium sp. FOPCO1, Aspergillus sp. F0Q001, and Cephalosporium sp. F03800 have both capabilities because they grew rapidly on cellulose as the only carbon source and were able to produce an area of growth inhibition in S. aureus of approx 2.04, 1.57, and 2.39 cm, respectively, on agar plates using the agar piece method. Subsequently, the antibiotic production obtained with those cellulolytic strains was evaluated by submerged fermentation at the flask level, in a simple culture medium containing lactose without biosynthesis precursor, obtaining 3670, 2830, and 4060 antibiotic units/mL, referred to as penicillin G, whereas for cellulolytic activity, the results were 1.34, 1.81 and 0.57 FPU/mL, respectively.  相似文献   

13.
Waste copier paper is a potential substrate for the production of glucose relevant for manufacture of platform chemicals and intermediates, being composed of 51 % glucan. The yield and concentration of glucose arising from the enzymatic saccharification of solid ink-free copier paper as cellulosic substrate was studied using a range of commercial cellulase preparations. The results show that in all cellulase preparations examined, maximum hydrolysis was only achieved with the addition of beta-glucosidase, despite its presence in the enzyme mixtures. With the use of Accellerase® (cellulase), high substrate loading decreased conversion yield. However, this was overcome if the enzyme was added between 12.5 and 20 FPU g substrate?1. Furthermore, this reaction condition facilitated continual stirring and enabled sequential additions (up to 50 % w/v) of paper to be made to the hydrolysis reaction, degrading nearly all (99 %) of the cellulose fibres and increasing the final concentration of glucose whilst simultaneously making high substrate concentrations achievable. Under optimal conditions (50 °C, pH 5.0, 72 h), digestions facilitate the production of glucose to much improved concentrations of up to 1.33 mol l?1.  相似文献   

14.
A cellulase production process was developed by growing the fungi Trichoderma reesei and Aspergillus phoenicis on dairy manure. T. reesei produced a high total cellulase titer (1.7 filter paper units [FPU]/mL, filter paper activity) in medium containing 10 g/L of manure (dry basis [w/w]), 2 g/L KH2PO4, 2 mL/L of Tween-80, and 2mg/L of CoCl2. However, β-glucosidase activity in the T. reesei-enzyme system was very low. T. reesei was then cocultured with A. phoenicis to enhance the β-glucosidase level. The mixed culture resulted in a relatively high level of total cellulase (1.54 FPU/mL) and β-glucosidase (0.64 IU/mL). The ratio of β-glucosidase activity to filter paper activity was 0.41, suitable for hydrolyzing manure cellulose. The crude enzyme broth from the mixed culture was used for hydrolyzing the manure cellulose, and the produced glucose was significantly (p<0.01) higher than levels obtained by using the commercial enzyme or the enzyme broth of the pure culture T. reesei.  相似文献   

15.
The biorefinery process for sugarcane bagasse saccharification generally requires significant accessibility of cellulose. We reported a novel method of cascade cellulase enzymatic hydrolysis coupling with ultrafine grinding pretreatment for sugarcane bagasse saccharification. Three enzymatic hydrolysis modes including single cellulase enzymatic hydrolysis, mixed cellulase enzymatic hydrolysis, and cascade cellulase enzymatic hydrolysis were compared. The changes on the functional group and surface morphology of bagasse during cascade cellulase enzymatic hydrolysis were also examined by FT-IR and SEM respectively. The results showed that cascade enzymatic hydrolysis was the most efficient way to enhance the sugarcane bagasse sacchari cation. More than 65% of reducing sugar yield with 90.1% of glucose selectivity was achieved at 50 oC, pH=4.8 for 72 h (1200 r/min) with cellulase I of 7.5 FPU/g substrate and cellulase II of 5 FPU/g substrate.  相似文献   

16.
Oil Palm Frond (OPF) is one of lignocellulosic biomass, which can be utilized as raw material for bioethanol production. Bioethanol is produced as alternative energy to substitute gasoline. There are four steps in bioethanol production from OPF, i.e pretreatement, saccharification, fermentation and purification process. In this study, optimization of saccharification and fermentation process for OPF was investigated. Two methods and the variations of enzyme concentration were carried out in the saccharification and fermentation process. Separate hydrolysis and fermentation process (SHF) and simultaneous saccharification and fermentation process (SSF) were conducted to produce ethanol optimally. Variations of enzyme concentration used in this process were 10, 20, 30 and 40 FPU/g substrate. The result shows that the highest ethanol concentration can be obtained in SSF process with 30 FPU/g substrate of enzyme concentration. The process produced 59.20 g/L ethanol (95.95% yield ethanol) at 96 h of SSF process.  相似文献   

17.
Paper mill sludge is a solid waste material generated from pulping and papermaking operations. Because of high glucan content and its well-dispersed structure, paper mill sludges are well suited for bioconversion into value-added products. It also has high ash content originated from inorganic additives used in papermaking, which causes hindrance to bioconversion. In this study, paper mill sludges from Kraft process were de-ashed by a centrifugal cleaner and successive treatment by sulfuric acid and sodium hydroxide, and used as a substrate for cellulase production. The treated sludge was the only carbon source for cellulase production, and predominantly inorganic nutrients were used as the nitrogen source for this bioprocess. The cellulase enzyme produced from the de-ashed sludge exhibited cellulase activity of 8 filter paper unit (FPU)/mL, close to that obtainable from pure cellulosic substrates. The yield of cellulase enzyme was 307 FPU/g glucan of de-ashed sludge. Specific activity was 8.0 FPU/mg protein. In activity tests conducted against the corn stover and α-cellulose, the xylanse activity was found to be higher than that of a commercial cellulase. Relatively high xylan content in the sludge appears to have induced high xylanase production. Simultaneous saccharification and fermentation (SSF) was performed using partially de-ashed sludge as the feedstock for ethanol production using Sacharomyces cerevisiae and the cellulase produced in-house from the sludge. With 6% (w/v) glucan feed, ethanol yield of 72% of theoretical maximum and 24.4 g/L ethanol concentration were achieved. These results were identical to those of the SSF using commercial cellulases.  相似文献   

18.
This study is related to the isolation of fungal strain for xylanase production using agro-industrial residues. Forty fungal strains with xylanolytic potential were isolated by using xylan agar plates and quantitatively screened in solid-state fermentation. Of all the tested isolates, the strain showing highest ability to produce xylanase was assigned the code Aspergillus niger LCBT-14. For the enhanced production of the enzyme, five different fermentation media were evaluated. Out of all media, M4 containing wheat bran gave maximum enzyme production. Effect of different variables including incubation time, temperature, pH, carbon and nitrogen sources has been investigated. The optimum enzyme production was obtained after 72 h at 30°C and pH 4. Glucose as a carbon source while ammonium sulphate and yeast extract as nitrogen sources gave maximum xylanase production (946 U/mL/min). This study was successful in producing xylanase by A. niger LCBT-14 economically by utilising cheap indigenous substrate.  相似文献   

19.
Glucose yield from the enzymatic hydrolysis of cellulose was investigated as a function of cellulase enzyme loading (7–36 filter paper units [FPU]/g cellulose) and solids concentration (7–18% total solids) for up to 72 h on dilute sulfuric-acid pretreated Douglas Fir. The saccharification was performed on whole hydrolysate with no separation or washing of the solids. Enzyme loading had a significant effect on glucose yield; solids concentration had a much smaller effect even at higher glucose concentrations. The data were used to generate an empirical model for glucose yield, and to fit parameters of a cellulose hydrolysis kinetic model. Both models could be used for economic evaluation of a separate hydrolysis and fermentation process.  相似文献   

20.
Our previous research has shown that saline Creeping Wild Ryegrass (CWR), Leymus triticoides, has a great potential to be used for bioethanol production because of its high fermentable sugar yield, up to 85% cellulose conversion of pretreated CWR. However, the high cost of enzyme is still one of the obstacles making large-scale lignocellulosic bioethanol production economically difficult. It is desirable to use reduced enzyme loading to produce fermentable sugars with high yield and low cost. To reduce the enzyme loading, the effect of addition of non-ionic surfactants and non-catalytic protein on the enzymatic hydrolysis of pretreated CWR was investigated in this study. Tween 20, Tween 80, and bovine serum albumin (BSA) were used as additives to improve the enzymatic hydrolysis of dilute sulfuric-acid-pretreated CWR. Under the loading of 0.1 g additives/g dry solid, Tween 20 was the most effective additive, followed by Tween 80 and BSA. With the addition of Tween 20 mixed with cellulase loading of 15 FPU/g cellulose, the cellulose conversion increased 14% (from 75 to 89%), which was similar to that with cellulase loading of 30 FPU/g cellulose and without additive addition. The results of cellulase and BSA adsorption on the Avicel PH101, pretreated CWR, and lignaceous residue of pretreated CWR support the theory that the primary mechanism behind the additives is prevention of non-productive adsorption of enzymes on lignaceous material of pretreated CWR. The addition of additives could be a promising technology to improve the enzymatic hydrolysis by reducing the enzyme activity loss caused by non-productive adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号