首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 408 毫秒
1.
Methods of capillary viscometry were used in studying the rheological properties and behavior of a broad range of rubbers, including polymers with narrow and wide molecular-weight-distribution as well as commercial rubber grades, at widely varying shear rates and stresses. As is shown, in full conformity with the previously conducted experiments, during transition from a fluid to highelastic (quasi-cross-linked) state, they are chracterized by spurting followed by sliding over the channel walls. This relaxation transition is characterized by a critical shear stress value invariant with respect to the molecular weight, molecularweight distribution and temperature. The parameters defining spurting of polymer flow as a function of molecular-weight characteristics, temperature, and channel geometry have been investigated in detail. It is shown for the first time that under supercritical conditions the rate of polymer flow through channels does not depend, in the first approximation, on the molecular weight of the polymer, its molecularweight distribution, temperature, and filling, but is determined only by the shear stress.  相似文献   

2.
The fracture initiation in engineering thermoplastics resulting from chemical degradation is usually observed in the form of a microcrack network within a surface layer of degraded polymer exposed to a combined action of mechanical stresses and chemically aggressive environment. Degradation of polymers is usually manifested in a reduction of molecular weight, increase of crystallinity in semi crystalline polymers, increase of material density, a subtle increase in yield strength, and a dramatic reduction in toughness. An increase in material density, i.e., shrinkage of the degraded layer is constrained by adjacent unchanged material results in a buildup of tensile stress within the degraded layer and compressive stress in the adjacent unchanged material due to increasing incompatibility between the two. These stresses are an addition to preexisting manufacturing and service stresses. At a certain level of degradation, a combination of toughness reduction and increase of tensile stress result in fracture initiation. A quantitative model of the described above processes is presented in these work. For specificity, the internally pressurized plastic pipes that transport a fluid containing a chemically aggressive (oxidizing) agent is used as the model of fracture initiation. Experimental observations of material density and toughness dependence on degradation reported elsewhere are employed in the model. An equation for determination of a critical level of degradation corresponding to the offset of fracture is constructed. The critical level of degradation for fracture initiation depends on the rates of toughness deterioration and build-up of the degradation related stresses as well as on the manufacturing and service stresses. A method for evaluation of the time interval prior to fracture initiation is also formulated.  相似文献   

3.
Simple shear rheological properties of solutions of a high molecular weight (8 × 106 g/mol) poly(ethylene oxide) (PEO) and its mixtures with sodium dodecyl sulfate (SDS) have been studied. Shear-thickening effects set in at a critical shear rate for PEO solutions. This particular behavior has not been reported for aqueous solutions of PEO, to our knowledge. The effect is attributed to PEO flow-induced self-aggregation. The experiments were performed in different operation modes (strain rate and stress controlled) and with different geometries (double wall Couette and Couette) and identical viscosities were obtained, which rules out flow instabilities as possible cause for the shear-thickening effect. Shear thickening was observed in the temperature range 15–50°C. Flow-induced PEO degradation occurs for shear rates in the shear-thickening regime, which indicates substantial chain deformation and accumulated stresses in the molecule when shear thickening occurs. Addition of SDS to the PEO solutions induces the formation of surfactant polymer complexes that preserve the characteristic shear-thickening effect.  相似文献   

4.
The major objectives of this study are to analytically and experimentally determine the residual resistance factor in the fractured medium based on the polymer solution properties and operational conditions. The parameters considered in this study are the polymer concentration, power law constitutive equation parameter, and salt concentration, sulfonation content of polymer, temperature, and molecular weight of the water soluble polymers which are used in polymer flooding for enhanced oil recovery. The results indicated that residual resistance factor in fractured medium is dependent on the coil overlap parameter and power law equation parameter of polymer. The coil overlap parameter is a dimensionless number consists of intrinsic viscosity and polymer concentration. Since intrinsic viscosity is a function of polymer diameter in medium conditions, to predict the residual resistance factor in fracture medium, an experimental correlation is generated for determination of the molecular diameter of polymer based on polymer molecular weight, temperature, salt concentration, and sulfonation content.  相似文献   

5.
Shape memory polymers (SMPs) can retain a temporary shape after pre-deformation at an elevated temperature and subsequent cooling to a lower temperature. When reheated, the original shape can be recovered. Relatively little work in the literature has addressed the constitutive modeling of the unique thermomechanical coupling in SMPs. Constitutive models are critical for predicting the deformation and recovery of SMPs under a range of different constraints. In this study, the thermomechanics of shape storage and recovery of an epoxy resin is systematically investigated for small strains (within ±10%) in uniaxial tension and uniaxial compression. After initial pre-deformation at a high temperature, the strain is held constant for shape storage while the stress evolution is monitored. Three cases of heated recovery are selected: unconstrained free strain recovery, stress recovery under full constraint at the pre-deformation strain level (no low temperature unloading), and stress recovery under full constraint at a strain level fixed at a low temperature (low temperature unloading). The free strain recovery results indicate that the polymer can fully recover the original shape when reheated above its glass transition temperature (Tg). Due to the high stiffness in the glassy state (T < Tg), the evolution of the stress under strain constraint is strongly influenced by thermal expansion of the polymer. The relationship between the final recoverable stress and strain is governed by the stress–strain response of the polymer above Tg. Based on the experimental results and the molecular mechanism of shape memory, a three-dimensional small-strain internal state variable constitutive model is developed. The model quantifies the storage and release of the entropic deformation during thermomechanical processes. The fraction of the material freezing a temporary entropy state is a function of temperature, which can be determined by fitting the free strain recovery response. A free energy function for the model is formulated and thermodynamic consistency is ensured. The model can predict the stress evolution of the uniaxial experimental results. The model captures differences in the tensile and compressive recovery responses caused by thermal expansion. The model is used to explore strain and stress recovery responses under various flexible external constraints that would be encountered in applications of SMPs.  相似文献   

6.
We find that symptoms of polymer melt fracture, such as a time-dependent decrease in apparent sample modulus and apparent slip, can be induced by oscillatory torsional shearing flow of polystyrene melts and solutions, even when the polymer molecular weight is below the entanglement threshold, and thre strain amplidute is as low as 3%. Visualization of samples during and after fracture show crack and bubble formation, as well as delamination of the polymer from the rheometer tools. For polystyrene melts, the critical stress for fracture is * 0.1–1.0 MPa, depending on polymer molecular weight and temperature, and for solutions it is as low as 5 × 103 Pa. Since constitutive instabilities require the viscoelastic properties to be highly nonlinear, our observations of melt fracture in unentangled polymers at shearing strains well within the linear viscoelastic range rule out this mechanism for some of our experiments, and show that melt fracture is not always caused by constitutive instabilities.  相似文献   

7.
We present the results of a large series of experiments aimed at the study of laws of damage accumulation and fracture in highly filled polymer materials under loading conditions of various types: monotone, repeated, low- and high-cycle, with varying type of stress state, dynamic (in general, more than 50 programs implemented on specimens from one lot of material). The data obtained in these test allow one to make conclusions about the constitutive role of the attained maximum of strain intensity when estimating the accumulated damage in the process of uniaxial tension by various programs (in particular, an additional cyclic deformation below the preliminary attained strain maximum does not affect the limit values of strain and stress in the subsequent active extension), about the strong influence of the stress state on the deformation and fracture, about the specific features of the nonlinear behavior of the material under the shock loading conditions and its influence on the repeated deformation. All tests are described (with an accuracy acceptable in practical calculations, both with respect to stresses and strains in the process of loading and at the moment of fracture) in the framework of the same model of nonlinear viscoelasticity with the same set of constants. The constants of the proposed model are calculated according to a relatively simple algorithm by using the results of standard uniaxial tension tests with constant values of the strain rate and hydrostatic pressure (each test for 2–3 levels of these parameters chosen from the ranges proposed in applications, each loading lasts until the fracture occurs, and one of the tests contains an intermediate interval of total loading and repeated loading) and one axial shock compression test if there are dynamic problems in the applications. The model is based on the use of the criterion fracture parameter which, in the class of proportional loading processes, is the sum of partial increments of the strain intensity on active segments of the process (where the strain intensity is at its historical maximum) with the form of the stress state and the intensity of strain rates taken into account.  相似文献   

8.
A model is presented that calculates the highly nonlinear mechanical properties of polymers as a function of temperature, strain and strain rate from their molecular structure. The model is based upon the premise that mechanical properties are a direct consequence of energy stored and energy dissipated during deformation of a material. This premise is transformed into a consistent set of structure–property relations for the equation of state and the engineering constitutive relations in a polymer by quantifying energy storage and loss at the molecular level of interactions between characteristic groups of atoms in a polymer. The constitutive relations are formulated as a set of analytical equations that predict properties directly in terms of a small set of structural parameters that can be calculated directly and independently from the chemical composition and morphology of a polymer.  相似文献   

9.
应用连续介质力学有限变形理论,分析了不可压电活性聚合物球壳在外加电场及内压作用下发生非对称变形的力电不稳定性问题。文中给出了不同外加电场下球壳的变形曲线和应力分布曲线, 结果表明对壁厚小于临界壁厚值的薄壁球壳,当内压大于临界内压值时,球壳可以产生不稳定的非对称变形。文中求得了球壳发生不稳定变形的临界壁厚及临界内压,探讨了外加电场对两个临界值的影响规律,同时讨论了外加电场对球壳中应力分布的影响。  相似文献   

10.
潘志亮  李玉龙 《力学学报》2006,38(6):831-834
利用分子动力学方法模拟了纳米晶钽在单轴拉伸载荷作用下的微观结构演化情况. 结果表明纳米晶钽在塑性变形过程中可以发生从BCC到FCC, HCP结构的应力诱导相变. FCC 结构原子百分比的最大值和试样的抗拉强度成线性关系,据此可推出一个相变发生的临界应 力值. 应变率越大,相变滞后于应力越严重. 当应变达到一定值时,试样会发生晶间断裂现 象,定量分析发现纳米晶钽晶间裂纹初始形成应变不受平均晶粒尺寸的影响,而与应变率和 模拟温度有着密切的关系.  相似文献   

11.
Solid phase deformation processing of glassy polymers produces highly anisotropic polymer components as a result of the massive reorientation of molecular chains during the large strain forming operation. Indeed, the polymer preform used as the starting materials is usually anisotropic owing to its prior deformation history. The process end product has often been fashioned for a particular application, i.e. to possess an increased flow strength along a particular axis, thereby exploiting the orientation induced anisotropy effects. The fully three-dimensional issues involved in the use of glassy polymer components include anisotropic flow strenghts, limiting extensibilities, and deformation patterns. These characteristics have been altered by the initial forming operation but are obviously not expected to be enhanced in all directions. The presence of anisotropy in structural components may also lead to premature failure or unexpected shear localization. In this report the effects of initial deformation and the associated anisotropies are investigated through uniaxial compression tests on preoriented polycarbonate (PC) and polymethylmethacrylate (PMMA) specimens. The evolving anisotropy is monitored by testing materials preoriented by various amounts of strain and under different states of deformation. The tensorial nature of the anisotropic material is characterized by examining the preoriented material response in three orthogonal directions. A model for the large strain deformation response of glassy polymers has been shown by Arruda and Boyce [in press] to be well predictive of the evolution of anisotropy during deformation in initially isotropic materials. Here the authors evaluate the ability of the model developed in Arruda and Boyce [in press] to predict several aspects of the anisotropic response of preoriented materials. Using material properties determined from the characterization of the isotropic material response and a knowledge of the anisotropic state of the preoriented material, model simulations are shown to accurately capture all aspects of the large strain anisotropic response including flow strengths, strain hardening characteristics, cross-sectional deformation patterns, and limiting extensibilities. Although anisotropy has been shown to evolve with temperature and strain rate in Boyce, Arruda and Jayachandran [in press] and also state of deformation in Arruda and Boyce [in press], we submit an experimental observation that the subsequent deformation response of preoriented polymers may be predicted using only a measure of optical anisotropy, and not the prior strain or thermal history. Optical anisotropy, as measured for example by birefringence, therefore represents a true internal variable indicative of the evolution of anisotropy with inelastic strain, state of strain, and temperature.  相似文献   

12.
Polycarbonate (PC) is an important amorphous glassy polymer whose intrinsic uniaxial response exhibits all the features like strain softening and hardening at large deformations characteristic of this class of materials. Polycarbonate is significantly ductile and is capable of sustaining large plastic deformation. Constitutive models of PC, in order to be useful, should be able to faithfully model its elastic as well as plastic behaviour with as few undetermined parameters as possible. We assess the efficacy of a particular model of glassy polymers by fitting its parameters through usual uniaxial tensile and compressive tests and then using those parameters to model a fracture specimen in 3-dimensions. A range of experimental techniques like digital image correlation, photoelasticity and x-ray tomography are used to make careful quantitative comparisons with computer simulations. Our results indicate that in view of the small scale yielding situation prevalent in PC specimens even at high loads, a faithful prediction of the elastic parameters are sufficient for reproducing most global responses and deformation fields away from the crack. However, to predict fracture initiation, the deformation state within the small but significant fracture process zone needs to be reproduced. This cannot be done unless the entire uniaxial response is modelled to a reasonable degree of accuracy.  相似文献   

13.
The nonlinear strain rate sensitivity, multiple creep and recovery behavior of polyphenylene oxide (PPO), which were explored through strain rate-controlled experiments at ambient temperature by Khan [The deformation behavior of solid polymers and modeling with the viscoplasticity theory based overstress, Ph.D. Thesis, Rensselaer Polytechnic Institute, New York], are modeled using the modified viscoplasticity theory based on overstress (VBO). In addition, VBO used by Krempl and Ho [An overstress model for solid polymer deformation behavior applied to Nylon 66, ASTM STP 1357, 2000, p. 118] and the classical VBO are used to demonstrate the improved modeling capabilities of VBO for solid polymer deformation. The unified model (VBO) has two tensor valued state variables, the equilibrium and kinematic stresses and two scalar valued states variables, drag and isotropic stresses. The simulations include monotonic loading and unloading at various strain rates, multiple creep and recovery at zero stress. Since creep behavior has been found to be profoundly influenced by the level of the stress, the tests are performed at different stresses above and below the yield point. Numerical results are compared to experimental data. It is shown that nonlinear rate sensitivity, nonlinear unloading, creep and recovery at zero stress can be reproduced using the modified viscoplasticity theory based on overstress.  相似文献   

14.
Based on the theories of finite deformation elasticity, electromechanical responses and instability of an incompressible electro-active polymer (EAP) cylindrical shell, which is subjected to an internal pressure and a static electric field, are studied. Deformation curves and distribution of stresses are obtained. It is found that an internal pressure together with an electric field may cause the unstable non-monotonic deformation of the shell. It is also shown that a critical thickness for the shell exists, and the shell may undergo the unstable deformation if its thickness is less than this critical value. In addition, the effects of the electric field, axial stretch, thickness, and internal pressure on the instability of the shell are discussed.  相似文献   

15.
The indentation response of polymer spherical shells is investigated. Finite deformation analyses are carried out with the polymer characterized as a viscoelastic/viscoplastic solid. Both pressurized and unpressurized shells are considered. Attention is restricted to axisymmetric deformations with a conical indenter. The response is analyzed for various values of the shell thickness to radius ratio and various values of the internal pressure. Two sets of material parameters are considered: one set having network stiffening at a moderate strain and the other having no network stiffening until very large strains are attained. The transition from an indentation type mode of deformation to a structural mode of deformation involving bending that occurs as the indentation depth increases is studied. The results show the effects of shell thickness, internal pressure and polymer constitutive characterization on this transition and on the deformation modes in each of these regimes.  相似文献   

16.
Mechanochemically responsive (MCR) polymers have been synthesized by incorporating mechanophores – molecules whose chemical reactions are triggered by mechanical force – into conventional polymer networks. Deformation of the MCR polymers applies force on the mechanophores and triggers their reactions, which manifest as phenomena such as changing colors, varying fluorescence and releasing molecules. While the activation of most existing MCR polymers requires irreversible plastic deformation or fracture of the polymers, we covalently coupled mechanophores into the backbone chains of elastomer networks, achieving MCR elastomers that can be repeatedly activated over multiple cycles of large and reversible deformations. This paper reports a microphysical model of MCR elastomers, which quantitatively captures the interplay between the macroscopic deformation of the MCR elastomers and the reversible activation of mechanophores on polymer chains with non-uniform lengths. Our model consistently predicts both the stress–strain behaviors and the color or fluorescence variation of the MCR elastomers under large deformations. We quantitatively explain that MCR elastomers with time-independent stress–strain behaviors can give time-dependent variation of color or fluorescence due to the kinetics of mechanophore activation and that MCR elastomers with different chain-length distributions can exhibit similar stress–strain behaviors but very different colors or fluorescence. Implementing the model into ABAQUS subroutine further demonstrates our model's capability in guiding the design of MCR elastomeric devices for applications such as large-strain imaging and color and fluorescence displays.  相似文献   

17.
金属塑性变形极限判据   总被引:2,自引:0,他引:2  
研究出金属材料塑性变形极限判据,它为断裂力学和失效分析提供理论依据。利用这判据,裂纹尖端的临界应变和相应的临界应力可以确定。在板料成形中,拉应力下颈缩失稳的临界应变值可以定出。节省大量试验工作。  相似文献   

18.
Deformation has a significant influence on the crystallization process in a number of polymers. In this paper, the response of a recently developed model for crystallizing polymers is investigated when subject to uni-, bi-axial and constant width extensions for a range of strain rates. Both the loading and unloading behavior are examined for these deformations. The particular model studied here was developed to capture the effect of strain induced crystallization in polymers and has been applied to model crystallization in polyethylene terephthalate at temperatures just above its glass transition temperature. The model has been formulated using the notion of multiple natural configurations within a full thermodynamic framework. The connection between micro-structural changes taking place in the polymer and the form of the model are elucidated. The interplay between the relaxation processes, the rate of deformation and their combined effect on crystallization is illustrated. The results show an earlier onset of crystallization for high strain rates due to stretching of the polymer network. At low strain rates however, crystallization is not observed as the polymer network is able to relax during the deformation. A sharp upturn in the stress is observed after the onset of crystallization due to the formation of a rigid crystalline phase. The unloading curves clearly show a hysteric behavior with the amount of dissipation increasing for increasing values of strain rate. These results compare favorably with experimental observations available in literature.  相似文献   

19.
Physical ageing of amorphous polymers well below their glass transition temperature leads to changes in almost all physical properties. Of particular interest is the increase in yield stress and post-yield strain softening that accompanies ageing of these materials. Moreover, at larger strain polymers seem to rejuvenate, i.e. aged and non-aged samples have identical stress-strain responses. Also, plastically deforming an aged sample seems to rejuvenate the polymer. In this work we use molecular dynamic simulations with a detailed force field suitable for macromolecular ensembles to simulate and understand the effects of ageing on the mechanical response of these materials. We show that within the timescales of these simulations it is possible to simulate both ageing and rejuvenation. The short range potentials play an important role in ageing and rejuvenation. A typical yield drop exhibited by glassy polymers is a manifestation of a sudden relaxation in the short range structure of an aged polymer. Moreover, the aged polymers are known to be brittle. We show that this is intimately related to its typical stress-strain response which allows it to carry arbitrarily large mean stresses ahead of a notch.  相似文献   

20.
When a crack in a thermally non-diffusive material is impact loaded—or propagates at high speed—a cohesive process which resists slow crack extension may itself cause decohesion by adiabatic heating. By assuming that decohesion ultimately occurs by low-energy disentanglement within a melt layer of critical thickness, the fracture resistance of craze-forming crystalline polymers can be estimated quantitatively. Previous estimates used a simple, thermomechanically linear representation of craze fibril drawing. This paper presents a more physically realistic, numerical formulation, and demonstrates it for constant craze thickening rate (as imposed by an ideal full-notch tension test) and for linearly increasing thickening rate (as at the tip of an impact-loaded or rapidly propagating crack). For a linear material, the numerical formulation gives results which asymptotically approach those from analytical solutions, as craze density approaches zero. In more realistic model polymers, the enthalpy of fusion increasingly delays decohesion as impact speed increases, although the temperature distribution of an endotherm appears to have little effect. Increasing molecular weight, heuristically associated with decreasing craze density and increasing structural dimension, increases the predicted impact fracture resistance. In every case, fracture resistance passes through a minimum as impact speed increases. The conclusions encourage the use of impact fracture tests, and discourage the use of the full-notch tension test, to assess the dynamic fracture resistance of a craze-forming polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号