首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We present a novel electrochemical sensor based on an electrode modified with molecularly imprinted polymers for the detection of chlorpyrifos. The modified electrode was constructed by the synthesis of molecularly imprinted polymers by a precipitation method then coated on a glassy carbon electrode. The surface morphology of the modified electrode was characterized by using field‐emission scanning electron microscopy and transmission electron microscopy. The performance of the imprinted sensor was thoroughly investigated by using cyclic voltammetry and differential pulse voltammetry. The imprinted electrochemical sensor displayed high repeatability, stability, and selectivity towards the template molecules. Under the optimal experimental conditions, the peak current response of the imprinted electrochemical sensor was linearly related to the concentration of chlorpyrifos over the range 1 × 10−10–1 × 10−5 mol/L with a limit of detection of 4.08 × 10−9 mol/L (signal‐to‐noise ratio = 3). Furthermore, the proposed molecularly imprinted electrochemical sensor was applied to the determination of chlorpyrifos in the complicated matrixes of real samples with satisfactory results. Therefore, the molecularly imprinted polymers based electrochemical sensor might provide a highly selective, rapid, and cost‐effective method for chlorpyrifos determination and related analysis.  相似文献   

2.
A novel electrochemical device for the sensitive determination of dopamine was developed based on a carbon paste electrode with polymeric ferric sulfate doped in the carbon paste and a carboxyl-functionalized carbon nanotube thin film on the surface. The modified electrode was characterized by scanning electron microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. The conditions for the preparation of electrode were optimized. The carbon nanotubes were shown to be stable on the surface of carbon paste electrode. The novel electrochemical device provided excellent activity toward dopamine. Amperometry and differential pulse voltammetry were used for the determination of dopamine in pH 7.0 phosphate buffer with a long linear range from 0.8 to 261?µM and a detection limit of 0.2?µM. The modified electrode showed excellent repeatability, good stability, and satisfactory reproducibility, thus demonstrating potential for practical applications.  相似文献   

3.
In this paper cyclic voltammetry was used for the synthesis of linear array spherical gold nanoparticles on the surface of glassy carbon electrode using methionine as a stable reagent. The methionine-gold nanoparticles on the surface of glassy electrode were obtained. The methionine-gold nanoparticles were characterized by cyclic voltammetry, scanning electron microscopy, energy dispersive spectrometry and powder X-ray diffraction. Electrochemical behavior of methionine at methionine-gold nanoparticle modified electrode was investigated. It was demonstrated that the methionine-gold nanoparticles can catalyze electrochemical transformations of methionine.  相似文献   

4.
Manganese phthalocyanine MnPc(SPh)4 has been synthesized and used to form self assembled monolayers on gold electrodes. The well packed SAM monolayer was characterized by analyzing the blocking of a number of Faradic processes by cyclic voltammetry, evaluating the electrical characteristics of the modified electrode by electrochemical impedance and imaging the modified surface by electrochemical scanning microscopy. Finally, MnPc(SPh)4‐SAM modified electrode displayed an electrocatalytic behavior toward the oxidation of nitrite.  相似文献   

5.
Optimisation of biocatalytic systems for the electroreduction of molecular O2 in biofuel cell cathodes implies screening of the catalytic activity of enzyme/redoxpolymer assemblies. Os-complex modified electrodeposition polymers are suggested for linking bilirubin oxidase catalysed O2 reduction via an electron hopping sequence along the redox polymer to the electrode. They can be non-manually precipitated on electrode surfaces by electrochemically induced pH modulation. Cyclic voltammetry provides a good estimation of the electrocatalytic activity of a redox polymer/enzyme modified electrode surface. In addition, scanning electrochemical microscopy operating in redox competition mode (RC-SECM) supplies images of the spatial distribution of the biocatalytic activity.  相似文献   

6.
ABSTRACT

The rapid electrochemical determination of Aceclofenac (ACF) has been employed by cyclic voltammetry (CV), differential pulse voltammetry (DPV) using developed OH-functionalised multiwalled carbon nanotube carbon paste electrode (OH-MWCNT/CPE). Modified electrode was characterised by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDAX), X-ray diffraction spectroscopy (XRD), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The ACF exhibits two oxidation peaks at +0.4 V, +0.66 V and one reduction peak at +0.3 V. The active surface area of the bare carbon paste electrode (BCPE) and modified electrode have been characterised by using K3[Fe(CN)6] solution containing 0.1 M KCl. In DPV mode, variation of ACF gave the limit of detection (LOD = 3s/m) 0.246 μM over the concentration range 1.0 to 190.0 μM (R2 = 0.9994). The developed electrode has good stability, reproducibility and could be successfully validated for the detection of ACF in pharmaceutical samples and biological fluids.  相似文献   

7.
An electrochemical sensor based on a polyfurfural-electrochemically reduced graphene oxide modified glassy carbon electrode has been developed for the sensitive and rapid determination of nitrofurazone. The morphologies and properties of the sensor were characterized by electrochemical impedance spectroscopy, scanning electron microscopy, cyclic voltammetry, and differential pulse voltammetry (DPV). In pH 7.0 Britton–Robinson buffer solution, the as-prepared polyfurfural-electrochemically reduced graphene oxide modified glassy carbon electrode shows excellent electrocatalytic performance for the electrochemical reduction of nitrofurazone, and the reduction peak current is about 9.45, 1.31, and 1.25 times higher than that of the bare glassy carbon electrode, polyfurfural modified glassy carbon electrode, and electrochemically reduced graphene oxide modified glassy carbon electrode, respectively. The DPV determination of nitrofurazone indicates that the linear range and detection limit of nitrofurazone are 1–50 and 0.25?µmol/dm3, respectively. In addition, this sensor exhibits high selectivity, reproducibility, stability, and also was successfully used to directly determine nitrofurazone in the commercial antibacterial lotion with comparative sensitivity to high-performance liquid chromatography, showing its promising application prospects.  相似文献   

8.
张亚  邢艳  焦玉荣 《分析试验室》2021,40(3):270-274
将银纳米粒子(AgNPs)电沉积在碳纳米纤维(CNFs)修饰玻碳电极表面制备纳米银/碳纳米纤维修饰玻碳电极(AgNPs/CNFs/GCE).采用扫描电镜考察其表面形态,在K3[Fe(CN)6]-K4[Fe(CN)6]体系中用循环伏安法和电化学阻抗法研究AgNPs/CNFs/GCE的电化学行为.采用循环伏安法和方波伏安法...  相似文献   

9.
Salicylic acid is a phytohormone, playing crucial roles in signal transduction, crop growth, and development, and defense to environmental challenges. In this study, a highly selective electrochemical sensor was designed and used to determine salicylic acid using molecularly imprinted polymers for recognition. The electrochemical sensor was fabricated via stepwise modification of gold nanoparticle–graphene–chitosan and molecularly imprinted polymers on a glassy carbon electrode. With electrochemical deposition, a gold nanoparticle–graphene–chitosan film was deposited on the glassy carbon electrode and enhanced the sensitivity. Molecularly imprinted polymers with adsorbed template salicylic acid were added to the surface of the modified electrode. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the modified electrodes. Salicylic acid in wheat was quantified by the sensor using the molecularly imprinted polymer/gold nanoparticle–graphene–chitosan/glassy carbon electrode. Concentrations of salicylic acid from 5?×?10?10 to 5?×?10?5?mol?L?1 were determined showing that the developed sensor was suitable for the analysis of food.  相似文献   

10.
采用循环伏安法在玻碳电极表面依次电沉积纳米二氧化锆和铂微粒,制备了一种检测甲醛的新型电化学传感器。用电镜扫描对该修饰电极表面进行了表征,循环伏安法和线性扫描伏安法研究了甲醛在该修饰电极上的电催化氧化作用,优化了实验参数。结果表明,该修饰电极对甲醛有很好的电催化氧化作用,在0.1 mol/L H2SO4溶液中,甲醛的氧化峰电流与其浓度在1.0×10-6~5.0×10-3mol/L范围内呈良好线性关系,回归方程为Ip(μA)=79.95+2.005×105c(mol/L),相关系数r=0.999 3,检出限为5.0×10-7mol/L。  相似文献   

11.
A carbon molecular wire electrode was fabricated using diphenylacetylene as the modifier and gold nanoparticles were electrodeposited on the surface. The morphology and electrochemical properties of this modified electrode were investigated by scanning electron microscopy and electrochemical impedance spectroscopy. Two well-defined peaks for metol appeared using this gold nanoparticle-modified carbon molecular wire electrode by cyclic voltammetry with a high current response. These results demonstrate a synergistic effect between the gold nanoparticles and the carbon molecular wire electrode resulting in a rapid electrochemical reaction. The electrochemical conditions for metol were optimized on the modified electrode and a detection limit of 0.64?µmol/L and a linear dynamic range between 2.0 to 800.0?µmol/L were obtained. This modified electrode provided good selectivity, high sensitivity, and acceptable reproducibility, demonstrating promise for the determination of metol in the water.  相似文献   

12.
A modified carbon paste electrode was prepared by incorporating the TiO2 nanoparticles in the carbon paste matrix. The electrochemical behavior of gallic acid (GA) is investigated on the surface of the electrode using cyclic voltammetry and differential pulse voltammetry. The surface morphology of the prepared electrode was characterized using the scanning electron microscopy. The results indicate that the electrochemical response of GA is improved significantly at the modified electrode compared with the unmodified electrode. Furthermore, the capabilities of electron transfer on these two electrodes were also investigated by electrochemical impedance spectroscopy. Under the optimized condition, a linear dynamic range of 2.5?×?10?6 to 1.5?×?10?4?mol?L?1 with detection limit of 9.4?×?10?7?mol?L?1 for GA is obtained in buffered solutions with pH 1.7. Finally, the proposed modified electrode was successfully used in real sample analysis.  相似文献   

13.
In this paper, an electrochemical sensor was prepared based on the modification of pencil graphite electrode (PGE) by hollow platinum nanoparticles/reduced graphene oxide (HPtNPs/rGO/PGE) for determination of ceftazidime (CFZ). Initially, rGO was electrodeposited on the electrode surface, and then, hollow platinum nanoparticles were placed on the electrode surface via galvanic displacement reaction of Pt(IV) ions with cobalt nanoparticles (CoNPs) that had electrodeposited on the electrode surface. Several significant parameters controlling the performance of the HPtNPs/rGO/PGE were examined and optimized using central composite design as one optimization methodology. The surface morphology and elemental characterization of the bare PGE, rGO/PGE, CoNPs/rGO/PGE, and HPtNPs/rGO/PGE-modified electrodes was analyzed by field-emission scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and electrochemical impedance spectroscopy. The electrochemical activity of CFZ on resulting modified electrode was investigated by cyclic voltammetry (CV) and adsorptive differential pulse voltammetry (AdDPV). Adsorptive differential pulse voltammetry indicates that peak current increases linearly with respect to increment in CFZ concentration. CFZ was determined in the linear dynamic range of 5.0 × 10?13 to 1.0 × 10?9 M, and the detection limit was determined as 2.2 × 10?13 M using AdDPV under optimized conditions. The results showed that modified electrode has high selectivity and very high sensitivity. The method was used to determine of CFZ in drug injection and plasma samples.  相似文献   

14.
通过在碳纳米管修饰玻碳电极表面电聚合的方法制备了聚对氨基苯磺酸/碳纳米管复合膜修饰电极(PABSA/CNT/GC),采用扫描电镜对电极形貌进行了表征。运用循环伏安法研究了尿酸(UA)和抗坏血酸(AA)在该修饰电极上的电化学行为,在pH7.0的PBS中,UA和AA分别在0.312、-0.025 V处产生灵敏氧化峰,与其在聚氨基苯磺酸和碳纳米管单层膜修饰电极上的电化学行为相比,两者的氧化峰电流显著增加,峰电位差(ΔEpa)达到337 mV,表明碳纳米管和聚合物产生协同增效作用,探讨了其作用机理。在优化实验条件下,建立了差分脉冲伏安法同时测定UA和AA的方法,UA、AA的线性范围分别为2.5×10-7~5.0×10-4、8.0×10-6~4.0×10-3mol/L,检出限分别为7.5×10-8、5.0×10-6mol/L。该方法用于尿样中UA和AA的测定,结果令人满意。  相似文献   

15.
A single walled carbon nanotube-chitosan (SWCNT-chitosan) modified disposable pencil graphite electrode (PGE) was used in this study for the electrochemical detection of Vitamin B(12). Electrochemical behaviors of SWCNT-chitosan PGE and chitosan modified PGE were compared by using cyclic voltammetry (CV), square-wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS) techniques. SWCNT-chitosan modified electrode was also used for the quantification of Vitamin B(12) in pharmaceutical products. The results show that this electrode system is suitable for sensitive Vitamin B(12) analysis giving good recovery results. The surface morphologies of the SWCNT-chitosan PGE, chitosan modified PGE and unmodified PGE were characterized by using scanning electron microscopy (SEM).  相似文献   

16.
结合自组装技术, 采用电聚合方法在碳纳米管修饰金电极表面制备对氯洁霉素具有特异性识别位点的分子印迹溶胶-凝胶薄膜, 成功构建了一种新型印迹溶胶-凝胶电化学传感器. 通过循环伏安法(CV)、示差脉冲法(DPV)、安培计时法(I-t)和扫描电镜(SEM)表征了该印迹溶胶-凝胶膜的电化学性能和表面形貌. 结果表明, 该传感器具有良好的选择性和灵敏度, 氯洁霉素在多壁碳纳米管修饰的印迹溶胶-凝胶传感器上的响应明显提高. 该印迹溶胶-凝胶传感器对氯洁霉素的浓度响应线性范围为5.0×10-7~8.0×10-5 mol/L, 检出限为2.44×10-8 mol/L. 该传感器被成功地用于人体尿液中氯洁霉素的分析测定.  相似文献   

17.
Shahrokhian S  Rastgar S 《The Analyst》2012,137(11):2706-2715
Mixtures of gold-platinum nanoparticles (Au-PtNPs) are fabricated consecutively on a multi-walled carbon nanotubes (MWNT) coated glassy carbon electrode (GCE) by the electrodeposition method. The surface morphology and nature of the hybrid film (Au-PtNPs/MWCNT) deposited on glassy carbon electrodes is characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The modified electrode is used as a new and sensitive electrochemical sensor for the voltammetric determination of cefotaxime (CFX). The electrochemical behavior of CFX is investigated on the surface of the modified electrode using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable improvement in the oxidation peak current of CFX compared to glassy carbon electrodes individually coated with MWCNT or Au-PtNPs. Under the optimized conditions, the modified electrode showed a wide linear dynamic range of 0.004-10.0 μM with a detection limit of 1.0 nM for the voltammetric determination of CFX. The modified electrode was successfully applied for the accurate determination of trace amounts of CFX in pharmaceutical and clinical preparations.  相似文献   

18.
Gold nanoparticles on the surface of multi-walled carbon nanotubes with glassy carbon electrode were prepared using electrochemical synthesis method. The thin films of gold Nanoparticles/multi-walled carbon nanotubes were characterized by scanning electron microscopy, powder X-ray diffraction, and cyclic voltammetry. Electrochemical behavior of adrenaline hydrochloride at gold nanoparticles/multi-walled carbon nanotube modified glassy carbon electrode was investigated. A simple, sensitive, and inexpensive method for determination of adrenaline hydrochloride was proposed.  相似文献   

19.
采用了研磨后超声和离心分离方法制备了二硫化钼纳米片,通过原子力显微镜(AFM)和扫描电子显微镜(SEM)对不同离心速度分离的二硫化钼纳米片进行了表征。使用循环伏安法(CV)和差分脉冲伏安法(DPV)在磺胺甲恶唑溶液中对二硫化钼纳米片修饰的玻碳电极进行了电化学行为研究。结果显示,磺胺甲恶唑在二硫化钼修饰电极的循环伏安图上有一对氧化还原峰。其峰电流值与扫描速度的平方根成正比,是扩散控制过程。DPV扫描结果显示,磺胺甲恶唑的峰电流与其浓度之间存在着明显的线性关系。研磨超声方法制备出的二硫化钼纳米片层材料在电极上能够加速电子的转移和传输,从而有效提高峰电流值,为进一步研制准确测定磺胺甲恶唑电化学传感器提供了一种可选择的材料和电化学分析方法。  相似文献   

20.
In this work four polyaniline (PANI) film electrode with different thickness were synthesized by electrochemical method on the surface of glassy carbon (GC) electrode. Four polymer films with various thicknesses from 0.5 to 11 μm were synthesized. Electropolymerization occurs in low monomer concentration. Morphology study of electrode shows that surface structure of polymers depends on film thickness. Capacitance of electrode was studied by CV and charge-discharge (CD) methods. Specific capacitance (SC) of electrodes using cyclic voltammetry were calculated 620, 247 F g–1 for thinnest and thickest polymer film, respectively. Stability of electrodes was studied during 1000 voltammogram cycles. Results show that with the increase of thickness the stability of electrodes enhanced and reach to a maximum and then decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号