首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We give all solutions of the equation f(n) = g(n) + h(n) for every n ∈ ?, where f is a completely multiplicative, g is a 2-additive, and h is a 3-additive function. We also determine all completely multiplicative functions f and all q-additive functions g for which f(n) = g 2(n) for every n ∈ ?.  相似文献   

2.
The paper is devoted to the normal families of meromorphic functions and shared functions. Generalizing a result of Chang (2013), we prove the following theorem. Let h (≠≡ 0,∞) be a meromorphic function on a domain D and let k be a positive integer. Let F be a family of meromorphic functions on D, all of whose zeros have multiplicity at least k + 2, such that for each pair of functions f and g from F, f and g share the value 0, and f(k) and g(k) share the function h. If for every fF, at each common zero of f and h the multiplicities mf for f and mh for h satisfy mfmh + k + 1 for k > 1 and mf ≥ 2mh + 3 for k = 1, and at each common pole of f and h, the multiplicities nf for f and nh for h satisfy nfnh + 1, then the family F is normal on D.  相似文献   

3.
Given any nonzero entire function g: ? → ?, the complex linear space F(g) consists of all entire functions f decomposable as f(z + w)g(z - w)=φ1(z1(w)+???+ φn(zn(w) for some φ1, ψ1, …, φn, ψn: ? → ?. The rank of f with respect to g is defined as the minimum integer n for which such a decomposition is possible. It is proved that if g is an odd function, then the rank any function in F(g) is even.  相似文献   

4.
Functional equations of the form f(x + y)g(x ? y) = Σ j=1 n α j (x)β j (y) as well as of the form f1(x + z)f2(y + z)f3(x + y ? z) = Σ j=1 m φ j (x, y)ψ j (z) are solved for unknown entire functions f, g j , β j : ? → ? and f1, f2, f3, ψ j : ? → ?, φ j : ?2 → ? in the cases of n = 3 and m = 4.  相似文献   

5.
The subject matter of this paper is an integral with exponential oscillation of phase f(x) weighted by g(x) on a finite interval [α β]: When the phase f(x) has a single stationary point in (α β), an nth-order asymptotic expansion of this integral is proved for n ≥ 2: This asymptotic expansion sharpens the classical result for n = 1 by M. N. Huxley. A similar asymptotic expansion was proved by V. Blomer, R. Khan and M. Young under the assumptions that f(x) and g(x) are smooth and g(x) is compactly supported on R: In the present paper, however, these functions are only assumed to be continuously differentiable on [α β] 2n + 3 and 2n + 1 times, respectively. Because there are no requirements on the vanishing of g(x) and its derivatives at the endpoints α and β, the present asymptotic expansion contains explicit boundary terms in the main and error terms. The asymptotic expansion in this paper is thus applicable to a wider class of problems in analysis, analytic number theory, and other fields.  相似文献   

6.
In this note, we study the admissible meromorphic solutions for algebraic differential equation fnf' + Pn?1(f) = R(z)eα(z), where Pn?1(f) is a differential polynomial in f of degree ≤ n ? 1 with small function coefficients, R is a non-vanishing small function of f, and α is an entire function. We show that this equation does not possess any meromorphic solution f(z) satisfying N(r, f) = S(r, f) unless Pn?1(f) ≡ 0. Using this result, we generalize a well-known result by Hayman.  相似文献   

7.
Let G be a graph, and g, f: V (G) → Z+ with g(x) ≤ f(x) for each xV (G). We say that G admits all fractional (g, f)-factors if G contains an fractional r-factor for every r: V (G) → Z+ with g(x) ≤ r(x) ≤ f(x) for any xV (G). Let H be a subgraph of G. We say that G has all fractional (g, f)-factors excluding H if for every r: V (G) → Z+ with g(x) ≤ r(x) ≤ f(x) for all xV (G), G has a fractional r-factor F h such that E(H) ∩ E(F h ) = θ, where h: E(G) → [0, 1] is a function. In this paper, we show a characterization for the existence of all fractional (g, f)-factors excluding H and obtain two sufficient conditions for a graph to have all fractional (g, f)-factors excluding H.  相似文献   

8.
We consider quadratic functions f that satisfy the additional equation y2 f(x) =  x2 f(y) for the pairs \({ (x,y) \in \mathbb{R}^2}\) that fulfill the condition P(x, y) =  0 for some fixed polynomial P of two variables. If P(x, y) =  axbyc with \({ a , b , c \in \mathbb{R}}\) and \({(a^2 + b^2)c \neq 0}\) or P(x,y) =  x n ? y with a natural number \({n \geq 2}\), we prove that f(x) =  f(1) x2 for all \({x \in \mathbb{R}}\). Some related problems, admitting quadratic functions generated by derivations, are considered as well.  相似文献   

9.
A general theorem (principle of a priori boundedness) on solvability of the boundary value problem dx = dA(t) · f(t, x), h(x) = 0 is established, where f: [a, b]×R n → R n is a vector-function belonging to the Carathéodory class corresponding to the matrix-function A: [a, b] → R n×n with bounded total variation components, and h: BVs([a, b],R n ) → R n is a continuous operator. Basing on the mentioned principle of a priori boundedness, effective criteria are obtained for the solvability of the system under the condition x(t1(x)) = B(x) · x(t 2(x))+c 0, where t i: BVs([a, b],R n ) → [a, b] (i = 1, 2) and B: BVs([a, b], R n ) → R n are continuous operators, and c 0 ∈ R n .  相似文献   

10.
In the paper, it is proved that, if f(x1,..., xn)g(y1,..., ym) is a multilinear central polynomial for a verbally prime T-ideal Γ over a field of arbitrary characteristic, then both polynomials f(x1,..., xn) and g(y1,..., ym) are central for Γ.  相似文献   

11.
Semi-Heavy Tails     
In this paper, we study properties of functions and sequences with a semi-heavy tail, that is, functions and sequences of the form w(x) = e?βxf(x), β > 0, resp., wn = cnfn, 0 < c < 1, where the function f(x), resp., the sequence (fn), is regularly varying. Among others, we give a representation theorem and study convolution properties. The paper includes several examples and applications in probability theory.  相似文献   

12.
In this paper we prove the following result. Let m ≥ 1, n ≥ 1 be fixed integers and let R be a prime ring with m + n + 1 ≤ char(R) or char(R) = 0. Suppose there exists an additive nonzero mapping D : RR satisfying the relation 2D(x n+m+1) = (m + n + 1)(x m D(x)x n + x n D(x)x m ) for all \({x\in R}\). In this case R is commutative and D is a derivation.  相似文献   

13.
Let \({f(x)=(x-a_1)\cdots (x-a_m)}\), where a 1, . . . , a m are distinct rational integers. In 1908 Schur raised the question whether f(x) ± 1 is irreducible over the rationals. One year later he asked whether \({(f(x))^{2^k}+1}\) is irreducible for every k ≥ 1. In 1919 Pólya proved that if \({P(x)\in\mathbb{Z}[x]}\) is of degree m and there are m rational integer values a for which 0 < |P(a)| < 2?N N! where \({N=\lceil m/2\rceil}\), then P(x) is irreducible. A great number of authors have published results of Schur-type or Pólya-type afterwards. Our paper contains various extensions, generalizations and improvements of results from the literature. To indicate some of them, in Theorem 3.1 a Pólya-type result is established when the ground ring is the ring of integers of an arbitrary imaginary quadratic number field. In Theorem 4.1 we describe the form of the factors of polynomials of the shape h(x) f(x) + c, where h(x) is a polynomial and c is a constant such that |c| is small with respect to the degree of h(x) f(x). We obtain irreducibility results for polynomials of the form g(f(x)) where g(x) is a monic irreducible polynomial of degree ≤ 3 or of CM-type. Besides elementary arguments we apply methods and results from algebraic number theory, interpolation theory and diophantine approximation.  相似文献   

14.
For any 0 < ? < 1 one can find a measurable set E ? [0, 1] with the measure |E| > 1 ? ? such that for each function f(x) ε L 1 (0, 1) a function g(x) ε L 1 (0, 1) exists such that it coincides with f (x) on E, its Fourier—Walsh series converges to it in the metric of L 1 (0, 1), and all nonzero terms of the sequence of Fourier coefficients of the new function obtained by the Walsh system have the modulo decreasing order; consequently, the greedy algorithm for this function converges to it in the L 1 (0, 1)-norm.  相似文献   

15.
There are two algebraic lower bounds of the number of n-periodic points of a self-map f : M → M of a compact smooth manifold of dimension at least 3: NF_n(f) = min{#Fix(g~n); g ~ f; g continuous} and NJD_n(f) = min{#Fix(g~n); g ~ f; g smooth}. In general, NJD_n(f) may be much greater than NF_n(f). We show that for a self-map of a semi-simple Lie group, inducing the identity fundamental group homomorphism,the equality NF_n(f) = NJD_n(f) holds for all n ? all eigenvalues of a quotient cohomology homomorphism induced by f have moduli 1.  相似文献   

16.
This paper is devoted to a study of L~q-tracing of the fractional temperature field u(t, x)—the weak solution of the fractional heat equation(?_t +(-?_x)~α)u(t, x) = g(t, x) in L~p(R_+~(1+n)) subject to the initial temperature u(0, x) = f(x) in L~p(R~n).  相似文献   

17.
Let(T, d) be a dendrite with finite branch points and f be a continuous map from T to T. Denote byω(x,f) and P(f) the ω-limit set of x under f and the set of periodic points of,respectively. Write Ω(x,f) = {y| there exist a sequence of points x_k E T and a sequence of positive integers n_1 n_2 … such that lim_(k→∞)x_k=x and lim_(k→∞)f~(n_k)(x_k) =y}. In this paper, we show that the following statements are equivalent:(1) f is equicontinuous.(2) ω(x, f) = Ω(x,f) for any x∈T.(3) ∩_(n=1)~∞f~n(T) = P(f),and ω(x,f)is a periodic orbit for every x ∈ T and map h : x→ω(x,f)(x ET)is continuous.(4) Ω(x,f) is a periodic orbit for any x∈T.  相似文献   

18.
We investigate the equiconvergence on TN = [?π, π)N of expansions in multiple trigonometric Fourier series and in the Fourier integrals of functions fLp(TN) and gLp(RN), p > 1, N ≥ 3, g(x) = f(x) on TN, in the case where the “partial sums” of these expansions, i.e., Sn(x; f) and Jα(x; g), respectively, have “numbers” n ∈ ZN and α ∈ RN (nj = [αj], j = 1,..., N, [t] is the integral part of t ∈ R1) containing N ? 1 components which are elements of “lacunary sequences.”  相似文献   

19.
An (a, d)-edge-antimagic total labeling of a graph G is a bijection f from V(G) ∪ E(G) onto {1, 2,…,|V(G)| + |E(G)|} with the property that the edge-weight set {f(x) + f(xy) + f(y) | xyE(G)} is equal to {a, a + d, a + 2d,...,a + (|E(G)| ? 1)d} for two integers a > 0 and d ? 0. An (a, d)-edge-antimagic total labeling is called super if the smallest possible labels appear on the vertices. In this paper, we completely settle the problem of the super (a, d)-edge-antimagic total labeling of the complete bipartite graph Km,n and obtain the following results: the graph Km,n has a super (a, d)-edge-antimagic total labeling if and only if either (i) m = 1, n = 1, and d ? 0, or (ii) m = 1, n ? 2 (or n = 1 and m ? 2), and d ∈ {0, 1, 2}, or (iii) m = 1, n = 2 (or n = 1 and m = 2), and d = 3, or (iv) m, n ? 2, and d = 1.  相似文献   

20.
The value of the deviation of a function f(x) from its de la Vallée-Poussin means Vmn(f, x) with respect to the trigonometric system for classes of piecewise smooth 2π-periodic functions is estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号