首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the synthesis and ultrathin film forming properties of α,ω‐diamine derivatives. The amphiphiles were synthesized as precursors to the formation of ionene polymers. Two materials were investigated: oligothiophene and azobenzene functional groups. These type of materials are of great interest for the preparation of ultrathin film layers with applications for photochemical regulation of liquid crystal (LC) orientation, optical storage media, and electroluminescent displays. Azobenzene and its derivatives are well known photochemical systems exhibiting the reversible cis‐trans photoisomerization. Conjugated oligothiophene derivatives, exhibit interesting optical and electronic properties for applications such as light emitting diodes (LED)s, Schottky diodes, and thin film field‐effect transistors (TFT). The two amphiphiles behaved very differently as Langmuir monolayers and LB films. Dye aggregation was observed with the azobenzene derivatives compared with the oligothiophenes.  相似文献   

2.
Quaternized poly(4‐vinylpyridine) (QPVP) has been incorporated as an anion exchanger into sol‐gel derived silica films for use in a spectroelectrochemical sensor. The preparation, characteristics and performance of these films are described. The films, which are spin‐coated onto the surface of a planar optically transparent electrode, are optically transparent and uniform. Scanning electron microscopy and spectroscopic ellipsometry have been used to examine film structure, thickness and optical properties. These films have been shown both spectroscopically and electrochemically to preconcentrate ferrocyanide, a model analyte for the sensor. The films can be regenerated for multiple measurements by exposure to 1 M KNO3. The effects of polymer molecular weight and storage conditions on film performance are described. The overall response of this film is comparable to the poly(dimethyldiallylammonium chloride)‐silica films previously used for this sensor.  相似文献   

3.
Novel side chain liquid crystalline polymer blends containing immiscible non‐chiral and cholesteric polymers were prepared. A non‐chiral polymer was used containing azobenzene side groups capable of EZ photoisomerization. Phase behaviour and miscibility properties of the blends were studied. Thin films of the blends were prepared by spin‐coating; it was shown that just after preparation these films are optically isotropic and homogeneous. Photo‐ and chiro‐optical properties of the films as well as photo‐orientation phenomena induced by the action of polarized light were investigated. It was found that the photo‐optical behavior of these films is rather complicated and considerably different from the properties of both individual components. This difference is associated with the strong influence of blend morphology on the photo‐optical properties.  相似文献   

4.
The CTA film can be characterized by e.g. its relatively high moisture regain, significantly low birefringence, and moderate mechanical strength. Having been commercialized more than fifty years ago, it has been widely used as photographic film, protective film for polarizing plate, and optical compensation film for liquid crystal display (LCD). The photographic film application exploits the optical isotropy and unique physical properties of the CTA film. In the application of the CTA film to protective film for polarizing plate, its low in-plane birefringence is of particular importance. In the optical compensation to enhance the viewing angle of LCD, the CTA film, because of its moderate retardation in thickness direction (Rth), serves as an element of compensator as well as a base film. Considering the growth of the LCD market, the demand for CTA film is believed to be further expanding.  相似文献   

5.
The design of efficient noncentrosymmetric materials remains the ultimate goal in the field of organic second‐order nonlinear optics. Unlike inorganic crystals currently used in second‐order nonlinear optical applications, organic materials are an attractive alternative owing to their fast electro‐optical response and processability, but their alignment into noncentrosymmetric film remains challenging. Here, symmetry breaking by judicious functionalization of 3D organic octupoles allows the emergence of multifunctional liquid crystalline chromophores which can easily be processed into large, flexible, thin, and self‐oriented films with second harmonic generation responses competitive to the prototypical inorganic KH2PO4 crystals. The liquid‐crystalline nature of these chiral organic films also permits the modulation of the nonlinear optical properties owing to the sensitivity of the supramolecular organization to temperature, leading to the development of tunable macroscopic materials.  相似文献   

6.
In situ measurement techniques suitable for determination of the coefficient of thermal expansion (CTE) in thin, spin‐cast polymer films in both the in‐plane and through‐plane directions are presented. An examination of the thermal expansion behavior of cyclotene thin films has been performed. In particular, the effect of film thickness on the in‐plane and through‐plane CTE and in‐plane Young's modulus of spin‐coated cyclotene films was examined. It is shown that the mechanical response of in situ cyclotene films can be adequately described by isotropic film properties. It was also demonstrated that there is no thickness dependence on the free‐standing mechanical properties or on the resulting through‐plane thermal strain in an in situ film. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 311–321, 1999  相似文献   

7.
Amorphous silicon carbonitride (a‐SiCN) films were produced by remote nitrogen plasma chemical vapour deposition (RP‐CVD) from bis(dimethylamino)methylsilane precursor. The effect of substrate temperature (T S) on the kinetics of RP‐CVD, chemical structure, surface morphology and some properties of the resulting films is reported. The T S dependence of film growth rate implies that RP‐CVD is an adsorption‐controlled process. Fourier transform infrared spectroscopic examination revealed that an increase in T S from 30 to 400°C involves the elimination of organic moieties from the film and the formation of Si─C and Si─N network structure. The films were characterized in terms of their surface roughness and basic physical and optical properties, such as density and refractive index, respectively. Reasonably good relationships between the structural parameters represented by relative integrated intensity of infrared absorption bands from the Si─C and Si─N bonds (controlled by T S) and the film properties are determined. Due to their small surface roughness, high density and high refractive index, the a‐SiCN films produced at T S ≥ 350°C would seem to be useful protective coatings for metals and optical devices.  相似文献   

8.
We report structural factors affecting the optical properties of blown polyethylene films. Two types of blown polyethylene films of similar degrees of crystallinity were made from (1) single‐site‐catalyst high‐density polyethylene (HDPE; STAR α) and (2) Ziegler–Natta‐catalyst HDPE (ZN) resins. The STAR α film exhibited high clarity and gloss, whereas the ZN film was turbid. Small‐angle X‐ray scattering (SAXS), small‐angle light scattering (SALS), and optical microscopy gave quantitative and qualitative information regarding structure and orientation in the films. A new approach is described for determining the three‐dimensional lamellar normal orientation from SAXS. Both the clear STAR α and turbid ZN films had similar lamellar crystalline structures and long periods but displayed different degrees of orientation. It is demonstrated that optical haze is related to surface features that seem to be linked to the bulk morphology. The relationship between haze and structural orientation is described. The lamellar orientation is linked to rodlike structures seen in optical microscopy and SALS through a stacked lamellar or cylindrite morphology on a nanometer scale and through a fiberlike morphology on a micrometer scale. The micrometer‐scale, rodlike structures seem directly related to surface roughness in a comparison of index‐matched immersion and surface micrographs. The higher haze and lower gloss of the ZN film was caused by extensive surface roughness not observed in the STAR α film. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2923–2936, 2001  相似文献   

9.
An ellipsometric technique is described for accurately measuring the film thickness of plasma-polymerized polymers on metallic substrates. The index of refraction n and absorption index Kof the plasma polymer film can also be studied by ellipsometry. Films of plasma polystyrene and polyepichlorohydrin were deposited on evaporated aluminum substrates and their thickness and optical constants determined. Plasma polystyrene films from 20 to 1600 Å thick have optical constants n = 1.63 and K =0 independent of film thickness. Plasma polyepichlorohydrin films over the same range of thickness give n ? 1.70 and K? 0.01. By utilizing the ellipsometric method the effect of plasma polymer film thickness on surface energy properties was determined. Advancing contact angle measurements and surface energy analysis detail the polar γSVP dispersion γSVPcontributions to the solid-vapor surface tension γSV = γSVd + γSVP Polystyrene and polyepichlorohydrin films on etched aluminum. For thin plasma polystyrene films (600 Å), anomalies in the calculated surface energy are discussed and related to possible surface nonuniformity caused by film growth. Thicker films of plasma polystyrene are shown to have normal surface energy properties as does plasma poly-epichlorohydrin over the entire range of film thickness measured. The adhesive and cohesive properties of plasma polystyrene and polyepichlorohydrin films are discussed as estimated from a lap-shear bond strength study. Etched aluminum coated with various thicknesses of these two polymers and bonded with an epoxy-phenolic adhesive shows a decreasing shear strength with increasing plasma film thickness but begins to level off at ~1600 psi for films >1600 Å thick.  相似文献   

10.
The layer‐by‐layer (LBL) assembly technique is an attractive method to make functional multilayer thin films and has been applied to fabricate a wide range of materials. LBL materials could improve optical transmittance and mechanical properties if the film components were covalently bonded. Covalently bonded nanocomposite multilayer films were prepared by employing hydrophilic aliphatic polyisocyanate (HAPI) as the reactive component, to react with Laponite and polyvinyl alcohol (PVA). FT‐IR spectra suggested that HAPI reacted with Laponite and PVA at ambient temperature rapidly. Ellipsometry measurement showed that the film thickness was in linear growth. The influences of HAPI on the optical, mechanical and thermal properties of the films were investigated by UV‐Vis spectroscopy, tensile stress measurement, DSC and TGA. The obtained results showed that the optical transmittance and mechanical strength were enhanced when the film components were covalently bonded by HAPI. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 545–551  相似文献   

11.
12.
A novel temperature‐step experimental method that extends the Bodiguel‐Fretigny liquid dewetting method of investigating polymer thin films is described and results presented from an investigation of thickness effects on the glass transition temperature (Tg) of ultrathin polystyrene (PS) films. Unlike most other methods of thin film investigation, this procedure promises a rapid screening tool to determine the overall profile of Tg versus film thickness for ultrathin polymer films using a limited number of samples. Similar to our prior observations and other literature data, with this new method obvious Tg depression was observed for PS thin films dewetting on both glycerol and an ionic liquid. The results for PS dewetting on the two different liquids are similar indicating only modest effects of the substrate on the Tg‐film thickness relationship. In both instances, the Tg depression is somewhat less than for similar PSs supported on silicon substrates reported in the literature. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1343–1349  相似文献   

13.
A cellulose derivative/liquid crystal composite‐type electro‐optical cell using a commercial cholesteric liquid crystal (CLC) was investigated. The electro‐optical properties of the system were examined, i.e. the dependence on applied voltage of the reflected wavelength and the minimum and maximum transmissions. A thin film of the CLC was dispersed with a cross‐linked cellulose film of 25 µm thickness. In the voltage dependence of the reflected wavelength it was verified that there is a hysteresis in the reflected wavelength. The variation of the reflected wavelength with temperature was also determined. The results are analysed in the framework of similar systems described in the literature for CLC dispersed in a polymer matrix.  相似文献   

14.
Polymer dispersed liquid crystal (PDLC) films were prepared by a devised method, in which photo‐polymerization induced phase separation in a mixtures of a macro‐iniferter, methyl acrylater, and liquid crystal. The morphology of the obtained PDLC films was examined on a polarized optical microscopy, and the effect of molecular weight of MIs on the electro‐optical properties was deliberately investigated. Decreasing the molecular weight of MIs in the films led to formation of larger liquid crystal droplets and a lower Vth values. Vsat increased and the memory effect decreased because of the increased interface anchoring strength induced by the higher molecular weight of polymer matrices. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1530–1534, 2009  相似文献   

15.
We propose a new approach for the production of thin film optical functional materials. The method is based on molecular design whereby two different types of lyotropic liquid crystals (LC), lyotropic LC based on columnar supramolecules and water-soluble rod-like polymer molecules are mixed. The resulting lyotropic guest–host system allows production of optical retardation films with tunable optical anisotropy controlled by composition of the guest–host system. Coatable retarders can be used in modern liquid crystal displays and TVs for optical compensation and enhancement of the LCD's performance.  相似文献   

16.
The deformation of oriented smectic liquid crystal elastomer films with smectic layers parallel to the film surface was studied using optical reflectometry and small angle X‐ray diffraction. Reflectometry data show that in the chosen material, in‐plane strain causes a change in the optical thickness of the free‐standing films. Small angle X‐ray scattering was used to explore the molecular origin of this effect. The X‐ray scattering data confirm that the change in optical thickness originates from the compression of the individual smectic layers. The measured Poisson ratio in the smectic A and C* phases is close to ½, in contrast to the smectic elastomers investigated earlier by Nishikawa et. al. [Macromol. Chem. Phys. 200, 312 (1999)]. In this unique material, the molecular lattice dimensions can be reversibly controlled by macroscopic stretching of the oriented samples.  相似文献   

17.
A novel vertical alignment film for nematic liquid crystals is reported based on electrostatic self‐assembly of alkyl sulfonic salts in aqueous solution. A series of self‐assembled films with different alkyl chain lengths were prepared and used as alignment films. It was revealed that only when the number of carbon atoms in the alkyl chain approaches 11 or larger, could the self‐assembled film induce vertical alignment of liquid crystals. We also found that the homeotropic alignment of liquid crystals was related to the surface roughness of self‐assembled films. In addition, this vertical alignment film showed good electro‐optical characteristics and excellent thermal stability.  相似文献   

18.
Three series of semiflexible and rigid main‐chain polyesters containing photoreactive mesogenic units derived from p‐phenylenediacrylic acid (PDA) and cinnamic acid have been synthesized by high‐temperature polycondensation. The thermal and mesomorphic properties of the polymers have been determined. The photochemical behavior of polymer P‐[1]‐T, which contains a PDA unit, has been studied both in solution and in films. In solution, [2+2] photocycloaddition, E/Z photoisomerization, and photo‐Fries rearrangement can take place. In contrast, the dominant process in spin‐coated films is the [2+2] photocycloaddition reaction, which causes crosslinking of the polymer. In films, the photochemistry and induction of anisotropy are strongly influenced by the aggregation of the PDA phenylester unit. A dichroism of about 0.2 has been induced in films by irradiation with linearly polarized UV light, and thus the capability of these films to induce optical anisotropy and align liquid crystals has been demonstrated. Liquid‐crystalline cells have been made with polarized irradiated films of P‐[1]‐T as aligning layers. A commercial liquid‐crystalline mixture has been used for this study, and a similar liquid‐crystalline order determined by polarized Fourier transform infrared to a commercial cell with rubbed polyimide as an aligning layer has been detected. Because of crosslinking of the irradiated P‐[1]‐T photoaligning layer, the photoinduced anisotropy is stable at high temperatures, and the liquid‐crystalline molecules are insoluble in the irradiated polymer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4907–4921, 2005  相似文献   

19.
Summary: Optically active poly[(R)‐ or (S)‐1,4‐bis(2‐(3′,4′‐ethylenedioxy)thienyl)‐2‐benzoic acid 1‐methylheptyl ester] was prepared by an electrochemical technique and characterized by circular dichroism measurements. It was found that the optical activity and optical rotation of the film could be controlled by adjusting the electronic state of the electrochemical process. Polymer films prepared in the oxidized state exhibit a weak Cotton effect, while the reduced polymer film exhibits the expected mirror‐image bisignate Cotton effect in the region of the ππ* transition of the polymer main chain. These results indicate that the main chain itself is chiral in the film state. This procedure has great potential for the preparation of functional electrochromic devices and the improved preparation of durable electrochromic devices based on the good film‐forming properties of the chiral polymer.

Cyclic voltammogram and CD spectra of the chiral polymer thin film produced here.  相似文献   


20.
We report the synthesis of a series of blue‐emitting 2‐phenylbenzoxazoles (PBOs) substituted at either the 5‐ or 6‐position of the benzoxazole ring and the para‐position of the phenyl substituent. The thermal and optical properties of the materials can be rationalized in terms of the position of the substituent at the benzoxazole moiety and the electron‐withdrawing or electron‐donating character of the substituents. From the results, we conclude that the combination of an electron‐donating substituent at the benzoxazole fragment and an electron‐withdrawing one at the phenyl fragment has a more marked effect on the electronic properties of the aromatic PBO core than other possibilities. This particular combination gives luminophores that are suitable for optical applications on the basis of their high emission efficiency and photostability. In view of that, oriented films were prepared by in situ polymerization of a mixture of a liquid crystalline direactive matrix containing 5% (w/w) of the luminophore. The films exhibit linearly polarized emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号