首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Summary Pulsed laser photolysis coupled with time-resolved UV-absorption monitoring of CH3COradicals was applied to obtain the rate constant, k1, for the reaction CH3CO+ HBr → CH3C(O)H + Br (1); k1(298 K) = (3.59 ± 0.23 (2σ))x10-12cm3molecule-1s-1. Utilization of k1in a third law procedure has provided the standard enthalpy of formation value ofDfH°298(CH3CO) = -10.04 ± 1.10 (2σ) kJ mol-1in excellent agreement with a very recent IUPAC recommendation.  相似文献   

2.
The discharge flow method with laser induced fluorescence detection of CH3O was applied to determine the rate constant, k 1, for the reaction CH3O + HBr → products (1) k 1 (298 K) = (8.41 ± 0.80(1σ)) 1011 cm3 mol-1 s-1. The unusually large k 1 value was explained by the polar nature of the transition state of the reaction. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
The kinetics of the reaction of the CH3CHBr, CHBr2 or CDBr2 radicals, R, with HBr have been investigated in a temperature-controlled tubular reactor coupled to a photoionization mass spectrometer. The CH3CHBr (or CHBr2 or CDBr2) radical was produced homogeneously in the reactor by a pulsed 248 nm exciplex laser photolysis of CH3CHBr2 (or CHBr3 or CDBr3). The decay of R was monitored as a function of HBr concentration under pseudo-first-order conditions to determine the rate constants as a function of temperature. The reactions were studied separately from 253 to 344 K (CH3CHBr + HBr) and from 288 to 477 K (CHBr2 + HBr) and in these temperature ranges the rate constants determined were fitted to an Arrhenius expression (error limits stated are 1σ + Student’s t values, units in cm3 molecule−1 s−1, no error limits for the third reaction): k(CH3CHBr + HBr) = (1.7 ± 1.2) × 10−13 exp[+ (5.1 ± 1.9) kJ mol−1/RT], k(CHBr2 + HBr) = (2.5 ± 1.2) × 10−13 exp[−(4.04 ± 1.14) kJ mol−1/RT] and k(CDBr2 + HBr) = 1.6 × 10−13 exp(−2.1 kJ mol−1/RT). The energy barriers of the reverse reactions were taken from the literature. The enthalpy of formation values of the CH3CHBr and CHBr2 radicals and an experimental entropy value at 298 K for the CH3CHBr radical were obtained using a second-law method. The result for the entropy value for the CH3CHBr radical is 305 ± 9 J K−1 mol−1. The results for the enthalpy of formation values at 298 K are (in kJ mol−1): 133.4 ± 3.4 (CH3CHBr) and 199.1 ± 2.7 (CHBr2), and for α-C–H bond dissociation energies of analogous compounds are (in kJ mol−1): 415.0 ± 2.7 (CH3CH2Br) and 412.6 ± 2.7 (CH2Br2), respectively.  相似文献   

4.
The title reactions have been studied at room temperature by applying the discharge flow method coupled with laser induced fluorescence detection of methoxy radicals and resonance fluorescence detection of bromine atoms. The following rate constants were determined: CH3O + Br Õ products (1) k 1 (298 K) = (3.4 ± 0.4 (1)) × 1013 cm3 mol-1 s-1, CH3O + Br2 Õ products (2) k 2 (298 K) £ 5 × 108 cm3 mol-1 s-1.  相似文献   

5.
The discharge-flow method with resonance fluorescence detection of OH radicals was applied to obtain the rate constant value of k D = 1.95 ± 0.14 (1σ) 1010 cm3 mol-1s-1 at 298 K. Combination with k H from our previous study gives the kinetic isotope effect of k H / k D = 5.33 ± 0.41. OH + CH3C(O)CH3 → Products (H) OH + CD3C(O)CD3 → Products(D) This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Summary Pulsed laser photolysis with resonance fluorescence monitoring of OH radicals was applied at T = 300±2 K to obtain the rate constants of k1= (3.38±0.60)x10-12, k2= (2.52±0.44)x10-13and k3 = (1.06±0.30)x10-13cm3molecule-1s-1with 2σprecision given for the overall reactions OH + CH3CH2OH (1), OH + CF2HCH2OH (2) and OH + CF3CH2OH (3), respectively. k2is the first direct kinetic data for the reaction of OH radicals with CF2HCH2OH reported in the literature.</o:p>  相似文献   

7.
Summary The fast flow technique with OH resonance fluorescence detection has been applied at T = 298 ± 2 K to study the kinetics of the overall reaction: H + CH3C(O)Cl → products (1) A rate constant value of k1 = (1.02 ± 0.12) x 1010 cm3 mol-1 s-1 has been determined which is the first direct kinetic parameter reported for reaction (1) in the literature (the error given refers to 2σ accuracy).  相似文献   

8.
By measurement of infrared chemiluminescence we have obtained for the branching ratio of the room temperature reaction H + Br2 (1), k*1/k1 = 0.015 ± 0.004 and for H + HBr (2), k*2/k2 ? 0.013. For H + Br2 → HBr(υ· ? 6) + Br (1), the detailed rate constant k* = 6) = 0.014 ± 0.003 relative to k· = 4) = 100.  相似文献   

9.
The potential energy surface of O(1D) + CH3CH2Br reaction has been studied using QCISD(T)/6‐311++G(d,p)//MP2/6‐311G(d,p) method. The calculations reveal an insertion‐elimination reaction mechanism of the title reaction. The insertion process has two possibilities: one is the O(1D) inserting into C? Br bond of CH3CH2Br producing one energy‐rich intermediate CH3CH2OBr and another is the O(1D) inserting into one of the C? H bonds of CH3CH2Br producing two energy‐rich intermediates, IM1 and IM2. The three intermediates subsequently decompose to various products. The calculations of the branching ratios of various products formed though the three intermediates have been carried out using RRKM theory at the collision energies of 0, 5, 10, 15, 20, 25, and 30 kcal/mol. CH3CH2O + Br are the main decomposition products of CH3CH2OBr. CH3COH + HBr and CH2CHOH + HBr are the main decomposition products for IM1; CH2CHOH + HBr are the main decomposition products for IM2. As IM1 is more stable and more likely to form than CH3CH2OBr and IM2, CH3COH + HBr and CH2CHOH + HBr are probably the main products of the O(1D) + CH3CH2Br reaction. Our computational results can give insight into reaction mechanism and provide probable explanations for future experiments. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

10.
Reactions of CF3Br with H atoms and OH radicals have been studied at room temperature at 1–2 torr pressures in a discharge flow reactor coupled to an EPR spectrometer. The rate constant of the reaction H + CF3Br → CF3 + HBr (1) was found to be k1 = (3.27 ± 0.34) × 10?14 cm3/molec·sec. For the reaction of OH with CF3Br (8) an upper limit of 1 × 10?15 cm3/molec·sec was determined for k8. When H atoms were in excess compared to NO2, used to produce OH radicals, a noticeable reactivity of OH was observed as a result of the reaction OH + HBr → H2O + Br, HBr being produced from reaction (1).  相似文献   

11.
The reactions of CH3O2 with SO2 and NO have been studied by steady state photolysis of azomethane in the presence of O2SO2→NO mixtures at 296 K and 1 atm total pressure. The quantum yield of NO oxidation by CH3O2 radicals is increased substantially when SO2 is added to the system indicating an SO2 induced chain oxidation of NO. The rate law gives k1/k2 = (2.5 ± 0.5) × 10?3 for CH3O2 + SO2 → CH3O2SO2 (1), CH3O2 + NO → CH3O + NO2 (2). Combining this ratio with the absolute value of k1 = 8.2 × 10?15 cm3 s?1 gives k2 = 10?11.5 ± 02 cm3 s?1.  相似文献   

12.
The absolute rate constants of the reactions F + H2CO → HF + HCO (1) and Br + H2CO → HBr + HCO (2) have been measured using the discharge flow reactor-EPR method. Under pseudo-first-order conditions (¦H2CO¦?¦F¦or¦Br¦), the following values were obtained at 298 K: k1 = (6.6 ± 1.1) × 10?11 and k2 = (1.6± 0.3) × 10?12, Units are cm3 molecule?1s?1. The stratospheric implication of these data is discussed and the value obtained for k makes reaction (2) a possible sink for Br atoms in the stratosphere.  相似文献   

13.
The rate coefficients for the reactions of Cl atoms with CH3Br, (k1) and CH2Br2, (k2) were measured as functions of temperature by generating Cl atoms via 308 nm laser photolysis of Cl2 and measuring their temporal profiles via resonance fluorescence detection. The measured rate coefficients were: k1 = (1.55 ± 0.18) × 10?11 exp{(?1070 ± 50)/T} and k2 = (6.37 ± 0.55) × 10?12 exp{(?810 ± 50)/T} cm3 molecule?1 s?1. The possible interference of the reaction of CH2Br product with Cl2 in the measurement of k1 was assessed from the temporal profiles of Cl at high concentrations of Cl2 at 298 K. The rate coefficient at 298 K for the CH2Br + Cl2 reaction was derived to be (5.36 ± 0.56) × 10?13 cm3 molecule?1 s?1. Based on the values of k1 and k2, it is deduced that global atmospheric lifetimes for CH3Br and CH2Br2 are unlikely to be affected by loss via reaction with Cl atoms. In the marine boundary layer, the loss via reaction (1) may be significant if the Cl concentrations are high. If found to be true, the contribution from oceans to the overall CH3Br budget may be less than what is currently assumed. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
The rate constants for the reaction H + HBr → H2 + Br were measured between 217 and 383 K using pulsed laser photolysis of HBr and cw resonance fluorescence detection of H(2S). The temporal profiles of the product Br atoms were also monitored to obtain the rate constant at 298 K. The yield of Br from the reaction was determined to be unity. The rate coefficient as a function of temperature is given by the Arrhenius expression, k 1 = (2.96 ± 0.44) × 10?11 exp(?(460 ± 40)/T) cm3 molecule?1 s?1. The quoted errors are at the 95% confidence level and include estimated systematic errors. Our results are compared with those from previous direct measurements. © John Wiley & Sons, Inc.  相似文献   

15.
Kinetics of the OH-initiated reactions of acetic acid and its deuterated isomers have been investigated performing simulation chamber experiments at T = 300 ± 2 K. The following rate constant values have been obtained (± 1σ, in cm3 molecule−1 s−1): k 1(CH3C(O)OH + OH) = (6.3 ± 0.9) × 10−13, k 2(CH3C(O)OD + OH) = (1.5 ± 0.3) × 10−13, k 3(CD3C(O)OH + OH) = (6.3 ± 0.9) × 10−13, and k 4(CD3C(O)OD + OH) = (0.90 ± 0.1) × 10−13. This study presents the first data on k 2(CH3C(O)OD + OH). Glyoxylic acid has been detected among the products confirming the fate of the CH2C(O)OH radical as suggested by recent theoretical studies.  相似文献   

16.
Relative rate coefficient data have been obtained for the reactions Br + RCHO → RCO + HBr for a series of aldehydes: HCHO, reaction (1); CH3CHO, reaction (2); CH3CH2CHO, reaction (3); CH3CH2CH2CHO, reaction (4). Measurements were made over the temperature range 240–300 K in an environmental chamber/FTIR spectrometer system, using standard relative rate techniques. All measured rate coefficient ratios were found to be independent of temperature over the range studied (k2/k1 = 3.60 ± 0.29, k3/k1 = 6.65 ± 0.53, k4/k1 = 8.62 ± 0.69, and k3/k2 = 1.80 ± 0.14), implying that the activation barriers for all four reactions are essentially identical with the A‐factors increasing with the size of the aldehyde. Relative rate coefficients for k1 and k2 agree well with currently recommended data at room temperature, but inconsistencies on the order of 20% arise at lower temperatures. The entire set of relative rate coefficient measurements is put on an absolute scale using a combination of currently recommended values for k1 and k2. The following expressions (all in units of cm3 molecule−1 s−1) are obtained: k1 = (0.79 ± 0.10) × 10−11 exp(−580 ± 200/T), k2 = (2.7 ± 0.4) × 10−11 exp(−567 ± 200/T), k3 = (5.75 ± 0.75) × 10−11 exp(−610 ± 200/T), k4 = (5.75 ± 0.75) × 10−11 exp(−540 ± 200/T), where uncertainties quoted for the A‐factor reflect the uncertainty in the room temperature value. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 460–465, 2000  相似文献   

17.
The mechanism and kinetics of the production of hydroxymethyl hydroperoxide (HMHP) in ethene/ ozone/water gas-phase system were investigated at room temperature (298±2 K) and atmospheric pressure (1×105 Pa). The reactants were monitored in situ by long path FTIR spectroscopy. Peroxides were measured by an HPLC post-column fluorescence technique after sampling with a cold trap. The rate constants (k3) of reaction CH2O2 H2O→HMHP (R3) determined by fitting model calculations to ex-perimental data range from (1.6―6.0)×10?17 cm3·molecule?1·s?1. Moreover, a theoretical study of reac-tion (R3) was performed using density functional theory at QCISD(T)/6-311 (2d,2p)//B3LYP/6-311 G(2d, 2p) level of theory. Based on the calculation of the reaction potential energy surface and intrinsic reac-tion coordinates, the classic transitional state theory (TST) derived k3 (kTST), canonical variational tran-sition state theory (CVT) derived k3 (kCVT), and the corrected kCVT with small-curvature tunneling (kCVT/SCT) were calculated using Polyrate Version 8.02 program to be 2.47×10-17, 2.47×10-17 and 5.22×10-17 cm3·molecule-1·s-1, respectively, generally in agreement with those fitted by the model.  相似文献   

18.
The photodissociation of ketene, CH2CO(X?1A1) → CH21A1) + CO(X 1Σ+) has been observed at 337 nm, using a pulsed nitrogen laser. The CH21A1) radical has been detected by laser induced fluorescence with a tunable dye laser. A laser excitation spectrum has been obtained from CH21A1) over the wavelength interval from 588.9 to 595.6 nm in the Σ ← Π vibronic subband of the CH21A1); υ″ = 0, 0, 0?b? 1B1; υ′ = 0, 14, 0) transition. For the CH21A1 ; υ′= 0, 0, 0?X? 3B1; υ′' = 0, 0, 0) energy separation an upper limit of (6.3 ± 0.8) kcal/mole has been found. The radiative lifetime τ and the rate constant k for the removal of the 000 rotational level of the Σ(0, 14, 0) vibronic state have been measured directly. The values are τ = (4.2 ± 0.2) μs and k = (7.4 ± 0.3) × 10?10 cm3 molecule?1 s?1, respectively.  相似文献   

19.
The fast flow method with laser induced fluorescence detection of CH3C(O)CH2 was employed to obtain the rate constant of k1 (298 K) = (1.83 ± 0.12 (1σ)) × 1010 cm3 mol?1 s?1 for the reaction CH3C(O)CH2 + HBr ? CH3C(O)CH3 + Br (1, ?1). The observed reduced reactivity compared with n‐alkyl or alkoxyl radicals can be attributed to the partial resonance stabilization of the acetonyl radical. An application of k1 in a third law estimation provides ΔfH(CH3C(O)CH2) values of ?24 kJ mol?1 and ?28 kJ mol?1 depending on the rate constants available for reaction ( ‐1 ) from the literature. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 38: 32–37, 2006  相似文献   

20.
CH3Br is photodissociated in the first continuum. Dissociation takes place into ground state CH3 and Br [ = Br(2P32] or Br* [ = Br(*P12)]. Time of flight and angular distributions of the CH3 fragments are measured. The Br*/Br ratios upon excitation at 222 and 193 nm are found to be 1.00 and 0.20 respectively. The anisotropy parameters at these wavelengths are β = 0.28±0.04 and β = ?0.23±0.02, respectively. The total absorption cross section is decomposed into partial absorption cross sections of the 1Q, 3Q0 and 3Q1 states. It appears that excitation at 222 nm takes place to the 3Q0 and 3Q 1 states whereas at 193 nm the 1Q and 3Q0 states are excited. Contrary to CH3I, the adiabatic curve crossing between the 3Q0 and the 1Q states in Ch3Br is not important. The dissociation energy of the CBr bond is determined to be D0(CH3Br) = 2.87±0.02 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号