首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 480 毫秒
1.
In this paper, we obtain exact solutions to the nonlinear system of partial differential equations (PDEs), describing the one dimensional unsteady simple flow of an isentropic, inviscid and perfectly conducting compressible fluid, subjected to a transverse magnetic field. Lie group of point transformations are used for constructing similarity variables which lead the governing system of PDEs to system of ordinary differential equations (ODEs); in some cases, it is possible to solve these equations exactly. A particular solution to the governing system, which exhibits space-time dependence, is used to study the evolutionary behavior of weak discontinuities.  相似文献   

2.
Using the invariance group properties of the governing systemof partial differential equations (PDEs), admitting Lie groupof point transformations with commuting infinitesimal generators,we obtain exact solutions to the system of PDEs describing one-dimensionalunsteady planar and cylindrically symmetric motions in magnetogasdynamicsinvolving shock waves. Some appropriate canonical variablesare characterised that transform the equations at hand to anequivalent autonomous form, the constant solutions of whichcorrespond to non-constant solutions of the original system.The governing system of PDEs includes as a special case theEuler's equations of non-isentropic gasdynamics. It is interestingto remark that in the absence of magnetic field, one of theexact solutions obtained here is precisely the blast wave solutionobtained earlier using a different method of approach. A particularsolution to the governing system, which exhibits space–timedependence, is used to study the wave pattern that finally developswhen a magnetoacoustic wave impacts with a shock. The influenceof magnetic field strength on the evolutionary behaviour ofincident and reflected waves and the jump in shock acceleration,after collision, are studied.  相似文献   

3.
Here, using Lie group transformations, we consider the problem of finding similarity solutions to the system of partial differential equations (PDEs) governing one-dimensional unsteady motion of a compressible fluid in the presence of viscosity and thermal conduction, using the general form of the equation of state. The symmetry groups admitted by the governing system of PDEs are obtained, and the complete Lie algebra of infinitesimal symmetries is established. Indeed, with the use of the entailed similarity solution the problem is transformed to a system of ordinary differential equations(ODEs), which in general is nonlinear; in some cases, it is possible to solve these ODEs to determine some special exact solutions.  相似文献   

4.
In this paper, we determine the critical time, when a weak discontinuity in the shallow water equations culminates into a bore. Invariance group properties of the governing system of partial differential equations (PDEs), admitting Lie group of point transformations with commuting infinitesimal operators, are presented. Some appropriate canonical variables are characterized that transform equations at hand to an equivalent form, which admits non-constant solutions. The propagation of weak discontinuities is studied in the medium characterized by the particular solution of the governing system.  相似文献   

5.
In this paper, we explicitly characterize a class of solutions to the first order quasilinear system of partial differential equations (PDEs), governing one dimensional unsteady planar and radially symmetric flows of an adiabatic gas involving shock waves. For this, Lie group analysis is used to identify a finite number of generators that leave the given system of PDEs invariant. Out of these generators, two commuting generators are constructed involving some arbitrary constants. With the help of canonical variables associated with these two generators, the assigned system of PDEs is reduced to an autonomous system, whose simple solutions provide non trivial solutions of the original system. It is interesting to remark that one of the special solutions obtained here, using this approach, is precisely the blast wave solution known in the literature.   相似文献   

6.
In this paper, we explicitly characterize a class of solutions to the first order quasilinear system of partial differential equations (PDEs), governing one dimensional unsteady planar and radially symmetric flows of an adiabatic gas involving shock waves. For this, Lie group analysis is used to identify a finite number of generators that leave the given system of PDEs invariant. Out of these generators, two commuting generators are constructed involving some arbitrary constants. With the help of canonical variables associated with these two generators, the assigned system of PDEs is reduced to an autonomous system, whose simple solutions provide non trivial solutions of the original system. It is interesting to remark that one of the special solutions obtained here, using this approach, is precisely the blast wave solution known in the literature.  相似文献   

7.
We present Lie symmetry analysis for investigating the shock‐wave structure of hyperbolic differential equations of polyatomic gases. With the application of symmetry analysis, we derive particular exact group invariant solutions for the governing system of partial differential equations (PDEs). In the next step, the evolutionary behavior of weak shock along with the characteristic shock and their interaction is investigated. Finally, the amplitudes of reflected wave, transmitted wave, and the jump in shock acceleration influenced by the incident wave after interaction are evaluated for the considered system of equations.  相似文献   

8.
B. Bira 《Applicable analysis》2013,92(12):2598-2607
The aim of this paper is to carry out symmetry group analysis to obtain important classes of exact solutions from the given system of nonlinear partial differential equations (PDEs). Lie group analysis is employed to derive some exact solutions of one dimensional unsteady flow of an ideal isentropic, inviscid and perfectly conducting compressible fluid, subject to a transverse magnetic field for the magnetogasdynamics system. By using Lie group theory, the full one-parameter infinitesimal transformations group leaving the equations of motion invariant is derived. The symmetry generators are used for constructing similarity variables which leads the system of PDEs to a reduced system of ordinary differential equations; in some cases, it is possible to solve these equations exactly. Further, using the exact solution, we discuss the evolutionary behavior of weak discontinuity.  相似文献   

9.
In this paper, a dynamical model of spinning multi-span pipes conveying fluid is proposed and the transverse natural and resonant frequencies and mode characteristics of such system are explored. The pipe body is considered to be composed of functionally graded materials (FGMs), in which a power law is used to govern the distribution of material properties along the pipe wall thickness. The partial differential equations (PDEs) governing two transverse motions of the pipe are derived by the extended Hamilton principle, in which the contributions of the FGM and intermediate supports are highlighted. The PDEs are discretized by the Galerkin procedure and the eigensystem theorem is applied to find the numerical solutions. The results show that various frequency characteristics can be attainable by use of different materials and mixing patterns. Attachments of intermediate supports can heighten the rigidity and improve the stability of spinning FG pipes conveying fluid, which are consequently used as “stabilizers” for the slender drill strings. Also, the mode characteristics of different spans will determine the locations of vibration amplitude of the pipes.  相似文献   

10.
This paper expands the ideas of the spectral homotopy analysis method to apply them, for the first time, on non-linear partial differential equations. The spectral homotopy analysis method (SHAM) is a numerical version of the homotopy analysis method (HAM) which has only been previously used to solve non-linear ordinary differential equations. In this work, the modified version of the SHAM is used to solve a partial differential equation (PDE) that models the problem of unsteady boundary layer flow caused by an impulsively stretching plate. The robustness of the SHAM approach is demonstrated by its flexibility to allow linear operators that are partial derivatives with variable coefficients. This is seen to significantly improve the convergence and accuracy of the method. To validate accuracy of the the present SHAM results, the governing PDEs are also solved using a novel local linearisation technique coupled with an implicit finite difference approach. The two approaches are compared in terms of accuracy, speed of convergence and computational efficiency.  相似文献   

11.
The approach we present in this work examines the synchronization of unidirectionally coupled nonlinear partial differential equations (PDEs) by an active control. It is a generalization of the method used by us to synchronize chaotic systems, described by one- or two-dimensional maps. The considered pair of PDEs are Fisher–Kolmogorov's equations, the synchronization of which we studied both analytically and numerically.  相似文献   

12.
Orbits of charged particles under the effect of a magnetic field are mathematically described by magnetic geodesics. They appear as solutions to a system of (nonlinear) ordinary differential equations of second order. But we are only interested in periodic solutions. To this end, we study the corresponding system of (nonlinear) parabolic equations for closed magnetic geodesics and, as a main result, eventually prove the existence of long time solutions. As generalization one can consider a system of elliptic nonlinear partial differential equations (PDEs) whose solutions describe the orbits of closed p-branes under the effect of a “generalized physical force”. For the corresponding evolution equation, which is a system of parabolic nonlinear PDEs associated to the elliptic PDE, we can establish existence of short time solutions.  相似文献   

13.
An approach for determining a class of master partial differential equations from which Type II hidden point symmetries are inherited is presented. As an example a model nonlinear partial differential equation (PDE) reduced to a target PDE by a Lie symmetry gains a Lie point symmetry that is not inherited (hidden) from the original PDE. On the other hand this Type II hidden symmetry is inherited from one or more of the class of master PDEs. The class of master PDEs is determined by the hidden symmetry reverse method. The reverse method is extended to determine symmetries of the master PDEs that are not inherited. We indicate why such methods are necessary to determine the genesis of Type II symmetries of PDEs as opposed to those that arise in ordinary differential equations (ODEs).  相似文献   

14.
We study a coupled system of ordinary differential equations and quasilinear hyperbolic partial differential equations that models a blood circulatory system in the human body. The mathematical system is a multiscale model in which a part of the system, where the flow can be regarded as Newtonian and homogeneous, and the vessels are long and large, is modeled by a set of hyperbolic PDEs in a one-spatial-dimensional network, and in the other part, where either vessels are too thin or the flow pattern is too complicated (such as in the heart), the flow is modeled as a lumped element by a set of ordinary differential equations as an analog of an electric circuit. The mathematical system consists of pairs of PDEs, one pair for each vessel, coupled at each junction through a system of ODEs. This model is a generalization of the widely studied models of arterial networks. We give a proof of the well-posedness of the initial-boundary value problem by showing that the classical solution exists, is unique, and depends continuously on initial, boundary and forcing functions and their derivatives.  相似文献   

15.
分析了上下正交运动的两平行圆盘间的非稳态的不可压缩的二维微极性流体的流动.应用von Krmn类型的一个相似变换,偏微分方程组(PDEs)被转化成一组耦合的非线性常微分方程(ODEs).应用同伦分析方法,得到方程的解析解,并且详细讨论了不同的物理参数,像膨胀率,渗透Reynolds数等,对流体的速度场的影响.  相似文献   

16.
The group theoretic approach is applied for solving the problem of unsteady natural convection flow of micropolar fluid along a vertical flat plate in a thermally stratified medium. The application of two-parameter transformation group reduces the number of independent variables in the governing system consisting of partial differential equations and a set of auxiliary conditions from three to only one independent variable, and consequently the system of governing partial differential equations with boundary conditions reduces to a system of ordinary differential equations with appropriate boundary conditions. Numerical solution of the velocity, microrotation and heat transfer have been obtained. The possible forms of the ambient temperature variation with position and time are derived.  相似文献   

17.
We obtain new semi-invariants for a system of two linear parabolic type partial differential equations (PDEs) in two independent variables under equivalence transformations of the dependent variables only. This is achieved for a class of systems of two linear parabolic type PDEs that correspond to a scalar complex linear (1 + 1) parabolic equation. The complex transformations of the dependent variables which map the complex scalar linear parabolic PDE to itself provide us with real transformations that map the corresponding system of linear parabolic type PDEs to itself with different coefficients in general. The semi-invariants deduced for this class of systems of two linear parabolic type equations correspond to the complex Ibragimov invariants of the complex scalar linear parabolic equation. We also look at particular cases of the system of parabolic type equations when they are uncoupled or coupled in a special manner. Moreover, we address the inverse problem of when systems of linear parabolic type equations arise from analytic continuation of a scalar linear parabolic PDE. Examples are given to illustrate the method implemented.  相似文献   

18.
Using a forward–backward stochastic differential equations (FBSDE) associated to a transmutation process driven by a finite sequence of Poisson processes, we obtain a probabilistic interpretation for a non-degenerate system of quasilinear parabolic partial differential equations (PDEs). The novetly is that the linear second order differential operator is different on each line of the system.  相似文献   

19.
Finite-dimensional approximations are developed for retarded delay differential equations (DDEs). The DDE system is equivalently posed as an initial-boundary value problem consisting of hyperbolic partial differential equations (PDEs). By exploiting the equivalence of partial derivatives in space and time, we develop a new PDE representation for the DDEs that is devoid of boundary conditions. The resulting boundary condition-free PDEs are discretized using the Galerkin method with Legendre polynomials as the basis functions, whereupon we obtain a system of ordinary differential equations (ODEs) that is a finite-dimensional approximation of the original DDE system. We present several numerical examples comparing the solution obtained using the approximate ODEs to the direct numerical simulation of the original non-linear DDEs. Stability charts developed using our method are compared to existing results for linear DDEs. The presented results clearly demonstrate that the equivalent boundary condition-free PDE formulation accurately captures the dynamic behaviour of the original DDE system and facilitates the application of control theory developed for systems governed by ODEs.  相似文献   

20.
本文基于生成函数的Taylor展开式及逐步简化步骤,提出了计算偏微分方程组的Lie群与高阶对称群的Taylor多项式算法,把标准算法中的求解超定偏微分方程组的问题转化为求解代数方程组的问题,降低了求解的难度,提高了计算效率,并且易用计算机代数系统在计算机上全过程实现,并得到重要的对称群  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号