首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, existence and attractiveness of solutions for quadratic Urysohn fractional integral equations on an unbounded interval are obtained by virtue of Tichonov fixed point theorem and suitable conjunction of the well known measure ω0(X) and the spaces C(R+). Further, three certain solutions sets XL,γ, X1,α and X1,(1−(α+v)), which tending to zero at an appropriate rate tν (ν > 0), ν = γ (or α or 1 − (α + v)) as t → ∞, are introduced and stability of solutions for quadratic Urysohn fractional integral equations are obtained based on these solutions sets respectively by applying Schauder fixed point theorem via some easy checked conditions. An example is given to illustrate the results.  相似文献   

2.
In this paper, we state and prove a new formula expressing explicitly the derivatives of shifted Chebyshev polynomials of any degree and for any fractional-order in terms of shifted Chebyshev polynomials themselves. We develop also a direct solution technique for solving the linear multi-order fractional differential equations (FDEs) with constant coefficients using a spectral tau method. The spatial approximation with its fractional-order derivatives (described in the Caputo sense) are based on shifted Chebyshev polynomials TL,n(x) with x ∈ (0, L), L > 0 and n is the polynomial degree. We presented a shifted Chebyshev collocation method with shifted Chebyshev–Gauss points used as collocation nodes for solving nonlinear multi-order fractional initial value problems. Several numerical examples are considered aiming to demonstrate the validity and applicability of the proposed techniques and to compare with the existing results.  相似文献   

3.
The symmetric quadratic knapsack problem (SQKP), which has several applications in machine scheduling, is NP-hard. An approximation scheme for this problem is known to achieve an approximation ratio of (1 + ?) for any ? > 0. To ensure a polynomial time complexity, this approximation scheme needs an input of a lower bound and an upper bound on the optimal objective value, and requires the ratio of the bounds to be bounded by a polynomial in the size of the problem instance. However, such bounds are not mentioned in any previous literature. In this paper, we present the first such bounds and develop a polynomial time algorithm to compute them. The bounds are applied, so that we have obtained for problem (SQKP) a fully polynomial time approximation scheme (FPTAS) that is also strongly polynomial time, in the sense that the running time is bounded by a polynomial only in the number of integers in the problem instance.  相似文献   

4.
We assess the performance of an exponential integrator for advancing stiff, semidiscrete formulations of the unsaturated Richards equation in time. The scheme is of second order and explicit in nature but requires the action of the matrix function φ(A) = A−1(eA − I) on a suitability defined vector v at each time step. When the matrix A is large and sparse, φ(A)v can be approximated by Krylov subspace methods that require only matrix-vector products with A. We prove that despite the use of this approximation the scheme remains second order. Furthermore, we provide a practical variable-stepsize implementation of the integrator by deriving an estimate of the local error that requires only a single additional function evaluation. Numerical experiments performed on two-dimensional test problems demonstrate that this implementation outperforms second-order, variable-stepsize implementations of the backward differentiation formulae.  相似文献   

5.
The class of k-ary n-cubes represents the most commonly used interconnection topology for distributed-memory parallel systems. Given an even k ? 4, let (V1V2) be the bipartition of the k-ary 2-cube, fv1, fv2 be the numbers of faulty vertices in V1 and V2, respectively, and fe be the number of faulty edges. In this paper, we prove that there exists a cycle of length k2 − 2max{fv1fv2} in the k-ary 2-cube with 0 ? fv1 + fv2 + fe ? 2. This result is optimal with respect to the number of faults tolerated.  相似文献   

6.
The one-dimensional planar Bratu problem is uxx + λ exp(u) = 0 subject to u(±1) = 0. Because there is an analytical solution, this problem has been widely used to test numerical and perturbative schemes. We show that over the entire lower branch, and most of the upper branch, the solution is well approximated by a parabola, u(x) ≈ u0 (1 − x2) where u0 is determined by collocation at a single point x = ξ. The collocation equation can be solved explicitly in terms of the Lambert W-function as u(0) ≈ −W(−λ(1 − ξ2)/2)/(1 − ξ2) where both real-valued branches of the W-function yield good approximations to the two branches of the Bratu function. We carefully analyze the consequences of the choice of ξ. We also analyze the rate of convergence of a series of even Chebyshev polynomials which extends the one-point approximation to arbitrary accuracy. The Bratu function is so smooth that it is actually poor for comparing methods because even a bad, inefficient algorithm is successful. It is, however, a solution so smooth that a numerical scheme (the collocation or pseudospectral method) yields an explicit, analytical approximation. We also fill some gaps in theory of the Bratu equation. We prove that the general solution can be written in terms of a single, parameter-free β(x) without knowledge of the explicit solution. The analytical solution can only be evaluated by solving a transcendental eigenrelation whose solution is not known explicitly. We give three overlapping perturbative approximations to the eigenrelation, allowing the analytical solution to be easily evaluated throughout the entire parameter space.  相似文献   

7.
This paper deals with ut = Δu + um(xt)epv(0,t), vt = Δv + uq(0, t)env(x,t), subject to homogeneous Dirichlet boundary conditions. The complete classification on non-simultaneous and simultaneous blow-up is obtained by four sufficient and necessary conditions. It is interesting that, in some exponent region, large initial data u0(v0) leads to the blow-up of u(v), and in some betweenness, simultaneous blow-up occurs. For all of the nonnegative exponents, we find that u(v) blows up only at a single point if m > 1(n > 0), while u(v) blows up everywhere for 0 ? m ? 1 (n = 0). Moreover, blow-up rates are considered for both non-simultaneous and simultaneous blow-up solutions.  相似文献   

8.
In this paper, we establish local Hölder estimate for non-negative solutions of the singular equation (M.P) below, for m in the range of exponents . Since we have trouble in finding the local energy inequality of v directly, we use the fact that the operator σ(−Δ) can be thought as the normal derivative of some extension v? of v to the upper half space (Caffarelli and Silvestre, 2007 [5]), i.e., v is regarded as boundary value of v? the solution of some local extension problem. Therefore, the local Hölder estimate of v can be obtained by the same regularity of v?. In addition, it enables us to describe the behavior of solution of non-local fast diffusion equation near their extinction time.  相似文献   

9.
In this paper, we propose two implicit compact difference schemes for the fractional cable equation. The first scheme is proved to be stable and convergent in l-norm with the convergence order O(τ + h4) by the energy method, where new inner products defined in this paper gives great convenience for the theoretical analysis. Numerical experiments are presented to demonstrate the accuracy and effectiveness of the two compact schemes. The computational results show that the two new schemes proposed in this paper are more accurate and effective than the previous.  相似文献   

10.
In this paper, we investigate the existence of positive solutions of singular super-linear (or sub-linear) integral boundary value problems for fractional differential equation involving Caputo fractional derivative. Necessary and sufficient conditions for the existence of C3[0, 1] positive solutions are given by means of the fixed point theorems on cones. Our nonlinearity f(tx) may be singular at t = 0 and/or t = 1.  相似文献   

11.
In this article, the powerful, easy-to-use and effective approximate analytical mathematical tool like homotopy analysis method (HAM) is used to solve the telegraph equation with fractional time derivative α (1 < α ? 2). By using initial values, the explicit solutions of telegraph equation for different particular cases have been derived. The numerical solutions show that only a few iterations are needed to obtain accurate approximate solutions. The method performs extremely well in terms of efficiency and simplicity to solve this historical model.  相似文献   

12.
In this paper, we consider the smoothing self-adaptive Levenberg-Marquardt algorithm for the system of nonlinear inequalities. By constructing a new smoothing function, the problem is approximated via a family of parameterized smooth equations H(x) = 0. A smoothing self-adaptive Levenberg-Marquardt algorithm is proposed for solving the system of nonlinear inequalities based on the new smoothing function. The Levenberg-Marquardt parameter μk is chosen as the product of μk = ∥Hkδ with δ ∈ (0, 2] being a positive constant. We will show that if ∥Hkδ provides a local error bound, which is weaker than the non-singularity, the proposed method converges superlinearly to the solution for δ ∈ (0, 1), while quadratically for δ ∈ [1, 2]. Numerical results show that the new method performs very well for system of inequalities.  相似文献   

13.
Let v be a valuation of a field K, Gv its value group and kv its residue field. Let w be an extension of v to K(x1, … , xn). w is called a residual transcendental extension of v if kw/kv is a transcendental extension. In this study a residual transcendental extension w of v to K(x1, … , xn) such that transdegkw/kv = n is defined and some considerations related with this valuation are given.  相似文献   

14.
Let G = (VE) be a connected graph. The distance between two vertices u, v ∈ V, denoted by d(uv), is the length of a shortest u − v path in G. The distance between a vertex v ∈ V and a subset P ⊂ V is defined as , and it is denoted by d(vP). An ordered partition {P1P2, … , Pt} of vertices of a graph G, is a resolving partition of G, if all the distance vectors (d(vP1), d(vP2), … , d(vPt)) are different. The partition dimension of G, denoted by pd(G), is the minimum number of sets in any resolving partition of G. In this article we study the partition dimension of Cartesian product graphs. More precisely, we show that for all pairs of connected graphs G, H, pd(G × H) ? pd(G) + pd(H) and pd(G × H) ? pd(G) + dim(H), where dim(H) denotes the metric dimension of H. Consequently, we show that pd(G × H) ? dim(G) + dim(H) + 1.  相似文献   

15.
A graph is denoted by G with the vertex set V(G) and the edge set E(G). A path P = 〈v0v1, … , vm〉 is a sequence of adjacent vertices. Two paths with equal length P1 = 〈 u1u2, … , um〉 and P2 = 〈 v1v2, … , vm〉 from a to b are independent if u1 = v1 = a, um = vm = b, and ui ≠ vi for 2 ? i ? m − 1. Paths with equal length from a to b are mutually independent if they are pairwisely independent. Let u and v be two distinct vertices of a bipartite graph G, and let l be a positive integer length, dG(uv) ? l ? ∣V(G) − 1∣ with (l − dG(uv)) being even. We say that the pair of vertices u, v is (ml)-mutually independent bipanconnected if there exist m mutually independent paths with length l from u to v. In this paper, we explore yet another strong property of the hypercubes. We prove that every pair of vertices u and v in the n-dimensional hypercube, with dQn(u,v)?n-1, is (n − 1, l)-mutually independent bipanconnected for every with (l-dQn(u,v)) being even. As for dQn(u,v)?n-2, it is also (n − 1, l)-mutually independent bipanconnected if l?dQn(u,v)+2, and is only (ll)-mutually independent bipanconnected if l=dQn(u,v).  相似文献   

16.
Let R ∈ Cn×n be a nontrivial involution, i.e., R2 = I and R ≠ ±I. A matrix A ∈ Cn×n is called R-skew symmetric if RAR = −A. The least-squares solutions of the matrix inverse problem for R-skew symmetric matrices with R∗ = R are firstly derived, then the solvability conditions and the solutions of the matrix inverse problem for R-skew symmetric matrices with R∗ = R are given. The solutions of the corresponding optimal approximation problem with R∗ = R for R-skew symmetric matrices are also derived. At last an algorithm for the optimal approximation problem is given. It can be seen that we extend our previous results [G.X. Huang, F. Yin, Matrix inverse problem and its optimal approximation problem for R-symmetric matrices, Appl. Math. Comput. 189 (2007) 482-489] and the results proposed by Zhou et al. [F.Z. Zhou, L. Zhang, X.Y. Hu, Least-square solutions for inverse problem of centrosymmetric matrices, Comput. Math. Appl. 45 (2003) 1581-1589].  相似文献   

17.
This paper gives SVD perturbation bounds and expansions that are of use when an m × n, m ? n matrix A has small singular values. The first part of the paper gives subspace bounds that are closely related to those of Wedin but are stated so as to isolate the effect of any small singular values to the left singular subspace. In the second part first and second order approximations are given for perturbed singular values. The subspace bounds are used to show that all approximations retain accuracy when applied to small singular values. The paper concludes by deriving a subspace bound for multiplicative perturbations and using that bound to give a simple approximation to a singular value perturbed by a multiplicative perturbation.  相似文献   

18.
This paper details our note [6] and it is an extension of our previous works  and  which dealt with first order (both in time and space) and second order time accurate (second order in time and first order in space) implicit finite volume schemes for second order hyperbolic equations with Dirichlet boundary conditions on general nonconforming multidimensional spatial meshes introduced recently in [14]. We aim in this work (and some forthcoming studies) to get higher order (both in time and space) finite volume approximations for the exact solution of hyperbolic equations using the class of spatial generic meshes introduced recently in [14] on low order schemes from which the matrices used to compute the discrete solutions are sparse. We focus in the present contribution on the one dimensional wave equation and on one of its implicit finite volume schemes described in [4]. The implicit finite volume scheme approximating the one dimensional wave equation we consider (hereafter referred to as the basic finite volume scheme) yields linear systems to be solved successively. The matrices involved in these linear systems are tridiagonal, symmetric and definite positive. The finite volume approximate solution of the basic finite volume scheme is of order h+kh+k, where h (resp. k  ) is the mesh size of the spatial (resp. time) discretization. We construct a new finite volume approximation of order (h+k)2(h+k)2 in several discrete norms which allow us to get approximations of order two for the exact solution and its first derivatives. This new high-order approximation can be computed using linear systems whose matrices are the same ones used to compute the discrete solution of the basic finite volume scheme while the right hand sides are corrected. The construction of these right hand sides includes the approximation of some high order spatial derivatives of the exact solution. The computation of the approximation of these high order spatial derivatives can be performed using the same matrices stated above with another two tridiagonal matrices. The manner by which this new high-order approximation is constructed can be repeated to compute successively finite volume approximations of arbitrary order using the same matrices stated above. These high-order approximations can be obtained on any one dimensional admissible finite volume mesh in the sense of [13] without any condition. To reach the above results, a theoretical framework is developed and some numerical examples supporting the theory are presented. Some of the tools of this framework are new and interesting and they are stated in the one space dimension but they can be extended to several space dimensions. In particular a new and useful a prior estimate for a suitable discrete problem is developed and proved. The proof of this a prior estimate result is based essentially on the decomposition of the solution of the discrete problem into the solutions of two suitable discrete problems. A new technique is used in order to get a convenient finite volume approximation whose discrete time derivatives of order up to order two are also converging towards the solution of the wave equation and their corresponding time derivatives.  相似文献   

19.
Let be a disjoint iteration group on the unit circle , that is a family of homeomorphisms such that F v1F v2 = F v1+v2 for v 1, v 2V and each F v either is the identity mapping or has no fixed point ((V, +) is a 2-divisible nontrivial Abelian group). Denote by the set of all cluster points of {F v (z), vV} for . In this paper we give a general construction of disjoint iteration groups for which .  相似文献   

20.
We show that entire positive solutions exist for the semilinear elliptic system Δu = p(x)vα, Δv = q(x)uβ on RN, N ≥ 3, for positive α and β, provided that the nonnegative functions p and q are continuous and satisfy appropriate decay conditions at infinity. We also show that entire solutions fail to exist if the functions p and q are of slow decay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号