首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We present an operator‐splitting scheme for fluid–structure interaction (FSI) problems in hemodynamics, where the thickness of the structural wall is comparable to the radius of the cylindrical fluid domain. The equations of linear elasticity are used to model the structure, while the Navier–Stokes equations for an incompressible viscous fluid are used to model the fluid. The operator‐splitting scheme, based on the Lie splitting, separates the elastodynamics structure problem from a fluid problem in which structure inertia is included to achieve unconditional stability. We prove energy estimates associated with unconditional stability of this modular scheme for the full nonlinear FSI problem defined on a moving domain, without requiring any sub‐iterations within time steps. Two numerical examples are presented, showing excellent agreement with the results of monolithic schemes. First‐order convergence in time is shown numerically. Modularity, unconditional stability without temporal sub‐iterations, and simple implementation are the features that make this operator‐splitting scheme particularly appealing for multi‐physics problems involving FSI. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
For two‐phase flow models, upwind schemes are most often difficult do derive, and expensive to use. Centred schemes, on the other hand, are simple, but more dissipative. The recently proposed multi‐stage (MUSTA ) method is aimed at coming close to the accuracy of upwind schemes while retaining the simplicity of centred schemes. So far, the MUSTA approach has been shown to work well for the Euler equations of inviscid, compressible single‐phase flow. In this work, we explore the MUSTA scheme for a more complex system of equations: the drift‐flux model, which describes one‐dimensional two‐phase flow where the motions of the phases are strongly coupled. As the number of stages is increased, the results of the MUSTA scheme approach those of the Roe method. The good results of the MUSTA scheme are dependent on the use of a large‐enough local grid. Hence, the main benefit of the MUSTA scheme is its simplicity, rather than CPU ‐time savings. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we continue to study the entropy dissipation scheme developed in former. We start with a numerical study of the scheme without the entropy dissipation term on the linear advection equation, which shows that the scheme is stable and numerical dissipation and numerical dispersion free for smooth solutions. However, the numerical results for discontinuous solutions show nonlinear instabilities near jump discontinuities. This is because the scheme enforces two related conservation properties in the computation. With this study, we design a so‐called ‘minimums‐increase‐and‐maximums‐decrease’ slope limiter in the reconstruction step of the scheme and delete the entropy dissipation in the linear fields and reduce the entropy dissipation terms in the nonlinear fields. Numerical experiments show improvements of the designed scheme compared with the results presented in former. However, the minimums‐increase‐and‐maximums‐decrease limiter is still not perfect yet, and better slope limiters are still sought. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
A conservative, single‐cell‐based semi‐Lagrangian transport model is proposed in this paper. Using multi‐moment concept, an additional moment, i.e. volume‐integrated average (VIA), is treated as the model variable besides the point value (PV) updated in the traditional semi‐Lagrangian schemes. A quadratic interpolation function is constructed based on local degrees of freedom defined within each single cell. The PV moment is advanced by the semi‐Lagrangian formulation, whereas the VIA moment is updated by a finite volume formulation to rigorously ensure the numerical conservation. The numerical fluxes are computed from the PV moments defined along the boundary edges of the control volume. The scheme is extended to the spherical geometry through the application of the cubed‐sphere grid that eliminates the polar singularity in the conventional longitude/latitude coordinates by using the quasi‐uniform grid spacing covering the whole sphere. The single‐cell‐based scheme is well suited for the treatment of the connections between different patches. A simple quasi‐monotone limiter to the PV moment is applied to suppress non‐physical oscillations. The proposed scheme has been validated via representative benchmark tests and the performance is competitive to other existing transport schemes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
This paper is to continue our previous work Niu (Int. J. Numer. Meth. Fluids 2001; 36 :351–371) on solving a two‐fluid model for compressible liquid–gas flows using the AUSMDV scheme. We first propose a pressure–velocity‐based diffusion term originally derived from AUSMDV scheme Wada and Liou (SIAM J. Sci. Comput. 1997; 18 (3):633—657) to enhance its robustness. The scheme can be applied to gas and liquid fluids universally. We then employ the stratified flow model Chang and Liou (J. Comput. Physics 2007; 225 :240–873) for spatial discretization. By defining the fluids in different regions and introducing inter‐phasic force on cell boundary, the stratified flow model allows the conservation laws to be applied on each phase, and therefore, it is able to capture fluid discontinuities, such as the fluid interfaces and shock waves, accurately. Several benchmark tests are studied, including the Ransom's Faucet problem, 1D air–water shock tube problems, 2D shock‐water column and 2D shock‐bubble interaction problems. The results indicate that the incorporation of the new dissipation into AUSM+‐up scheme and the stratified flow model is simple, accurate and robust enough for the compressible multi‐phase flows. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
We derive a partially analytical Roe scheme with wave limiters for the compressible six‐equation two‐fluid model. Specifically, we derive the Roe averages for the relevant variables. First, the fluxes are split into convective and pressure parts. Then, independent Roe conditions are stated for these two parts. These conditions are successively reduced while defining acceptable Roe averages. For the convective part, all the averages are analytical. For the pressure part, most of the averages are analytical, whereas the remaining averages are dependent on the thermodynamic equation of state. This gives a large flexibility to the scheme with respect to the choice of equation of state. Furthermore, this model contains nonconservative terms. They are a challenge to handle right, and it is not the object of this paper to discuss this issue. However, the Roe averages presented in this paper are fully independent from how those terms are handled, which makes this framework compatible with any treatment of nonconservative terms. Finally, we point out that the eigenspace of this model may collapse, making the Roe scheme inapplicable. This is called resonance. We propose a fix to handle this particular case. Numerical tests show that the scheme performs well. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we present a class of high‐order accurate cell‐centered arbitrary Lagrangian–Eulerian (ALE) one‐step ADER weighted essentially non‐oscillatory (WENO) finite volume schemes for the solution of nonlinear hyperbolic conservation laws on two‐dimensional unstructured triangular meshes. High order of accuracy in space is achieved by a WENO reconstruction algorithm, while a local space–time Galerkin predictor allows the schemes to be high order accurate also in time by using an element‐local weak formulation of the governing PDE on moving meshes. The mesh motion can be computed by choosing among three different node solvers, which are for the first time compared with each other in this article: the node velocity may be obtained either (i) as an arithmetic average among the states surrounding the node, as suggested by Cheng and Shu, or (ii) as a solution of multiple one‐dimensional half‐Riemann problems around a vertex, as suggested by Maire, or (iii) by solving approximately a multidimensional Riemann problem around each vertex of the mesh using the genuinely multidimensional Harten–Lax–van Leer Riemann solver recently proposed by Balsara et al. Once the vertex velocity and thus the new node location have been determined by the node solver, the local mesh motion is then constructed by straight edges connecting the vertex positions at the old time level tn with the new ones at the next time level tn + 1. If necessary, a rezoning step can be introduced here to overcome mesh tangling or highly deformed elements. The final ALE finite volume scheme is based directly on a space–time conservation formulation of the governing PDE system, which therefore makes an additional remapping stage unnecessary, as the ALE fluxes already properly take into account the rezoned geometry. In this sense, our scheme falls into the category of direct ALE methods. Furthermore, the geometric conservation law is satisfied by the scheme by construction. We apply the high‐order algorithm presented in this paper to the Euler equations of compressible gas dynamics as well as to the ideal classical and relativistic magnetohydrodynamic equations. We show numerical convergence results up to fifth order of accuracy in space and time together with some classical numerical test problems for each hyperbolic system under consideration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, an original second‐order upwind scheme for convection terms is described and implemented in the context of a Control‐Volume Finite‐Element Method (CVFEM). The proposed scheme is a second‐order extension of the first‐order MAss‐Weighted upwind (MAW) scheme proposed by Saabas and Baliga (Numer. Heat Transfer 1994; 26B :381–407). The proposed second‐order scheme inherits the well‐known stability characteristics of the MAW scheme, but exhibits less artificial viscosity and ensures much higher accuracy. Consequently, and in contrast with nearly all second‐order upwind schemes available in the literature, the proposed second‐order MAW scheme does not need limiters. Some test cases including two pure convection problems, the driven cavity and steady and unsteady flows over a circular cylinder, have been undertaken successfully to validate the new scheme. The verification tests show that the proposed scheme exhibits a low level of artificial viscosity in the pure convection problems; exhibits second‐order accuracy for the driven cavity; gives accurate reattachment lengths for low‐Reynolds steady flow over a circular cylinder; and gives constant‐amplitude vortex shedding for the case of high‐Reynolds unsteady flow over a circular cylinder. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
This paper reports numerical convergence study for simulations of steady shock‐induced combustion problems with high‐resolution shock‐capturing schemes. Five typical schemes are used: the Roe flux‐based monotone upstream‐centered scheme for conservation laws (MUSCL) and weighted essentially non‐oscillatory (WENO) schemes, the Lax–Friedrichs splitting‐based non‐oscillatory no‐free parameter dissipative (NND) and WENO schemes, and the Harten–Yee upwind total variation diminishing (TVD) scheme. These schemes are implemented with the finite volume discretization on structured quadrilateral meshes in dimension‐by‐dimension way and the lower–upper symmetric Gauss–Seidel (LU–SGS) relaxation method for solving the axisymmetric multispecies reactive Navier–Stokes equations. Comparison of iterative convergence between different schemes has been made using supersonic combustion flows around a spherical projectile with Mach numbers M = 3.55 and 6.46 and a ram accelerator with M = 6.7. These test cases were regarded as steady combustion problems in literature. Calculations on gradually refined meshes show that the second‐order NND, MUSCL, and TVD schemes can converge well to steady states from coarse through fine meshes for M = 3.55 case in which shock and combustion fronts are separate, whereas the (nominally) fifth‐order WENO schemes can only converge to some residual level. More interestingly, the numerical results show that all the schemes do not converge to steady‐state solutions for M = 6.46 in the spherical projectile and M = 6.7 in the ram accelerator cases on fine meshes although they all converge on coarser meshes or on fine meshes without chemical reactions. The result is based on the particular preconditioner of LU–SGS scheme. Possible reasons for the nonconvergence in reactive flow simulation are discussed.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents a family of High‐order finite volume schemes applicable on unstructured grids. The k‐exact reconstruction is performed on every control volume as the primary reconstruction. On a cell of interest, besides the primary reconstruction, additional candidate reconstruction polynomials are provided by means of very simple and efficient ‘secondary’ reconstructions. The weighted average procedure of the WENO scheme is then applied to the primary and secondary reconstructions to ensure the shock‐capturing capability of the scheme. This procedure combines the simplicity of the k‐exact reconstruction with the robustness of the WENO schemes and represents a systematic and unified way to construct High‐order accurate shock capturing schemes. To further improve the efficiency, an efficient problem‐independent shock detector is introduced. Several test cases are presented to demonstrate the accuracy and non‐oscillation property of the proposed schemes. The results show that the proposed schemes can predict the smooth solutions with uniformly High‐order accuracy and can capture the shock waves and contact discontinuities in high resolution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
In this article, we present two improved third‐order weighted essentially nonoscillatory (WENO) schemes for recovering their design‐order near first‐order critical points. The schemes are constructed in the framework of third‐order WENO‐Z scheme. Two new global smoothness indicators, τL3 and τL4, are devised by a nonlinear combination of local smoothness indicators (ISk) and reference values (ISG) based on Lagrangian interpolation polynomial. The performances of the proposed schemes are evaluated on several numerical tests governed by one‐dimensional linear advection equation or one‐ and two‐dimensional Euler equations. Numerical results indicate that the presented schemes provide less dissipation and higher resolution than the original WENO3‐JS and subsequent WENO3‐N scheme.  相似文献   

12.
A bounded upwinding scheme for numerical solution of hyperbolic conservation laws and Navier–Stokes equations is presented. The scheme is based on convection boundedness criterion and total variation diminishing stability criteria and developed by employing continuously differentiable functions. The accuracy of the scheme is verified by assessing the error and observed convergence rate on 1‐D benchmark test cases. A comparative study between the new scheme and conventional total variation diminishing/convection boundedness criterion‐based upwind schemes to solve standard nonlinear hyperbolic conservation laws is also accomplished. The scheme is then examined in the simulation of Newtonian and non‐Newtonian fluid flows of increasing complexity; a satisfactory agreement has been observed in terms of the overall behavior. Finally, the scheme is used to study the hydrodynamics of a gas‐solid flow in a bubbling fluidized bed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
On the basis of the work [P.‐H. Maire, R. Abgrall, J. Breil, J. Ovadia, SIAM J. Sci. Comput. 29 (2007), 1781–1824], we present an entropy fixed cell‐centered Lagrangian scheme for solving the Euler equations of compressible gas dynamics. The scheme uses the fully Lagrangian form of the gas dynamics equations, in which the primary variables are cell‐centered. And using the nodal solver, we obtain the nodal viscous‐velocity, viscous‐pressures, antidissipation velocity, and antidissipation pressures of each node. The final nodal velocity is computed as a weighted sum of viscous‐velocity and antidissipation velocity, so do nodal pressures, whereas these weights are calculated through the total entropy conservation for isentropic flows. Consequently, the constructed scheme is conservative in mass, momentum, and energy; preserves entropy for isentropic flows, and satisfies a local entropy inequality for nonisentropic flows. One‐ and two‐dimensional numerical examples are presented to demonstrate theoretical analysis and performance of the scheme in terms of accuracy and robustness.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Shallow water models are widely used to describe and study free‐surface water flow. While in some practical applications the bottom friction does not have much influence on the solutions, there are still many applications, where the bottom friction is important. In particular, the friction terms will play a significant role when the depth of the water is very small. In this paper, we study shallow water equations with friction terms and develop a semi‐discrete second‐order central‐upwind scheme that is capable of exactly preserving physically relevant steady states and maintaining the positivity of the water depth. The presence of the friction terms increases the level of complexity in numerical simulations as the underlying semi‐discrete system becomes stiff when the water depth is small. We therefore implement an efficient semi‐implicit Runge‐Kutta time integration method that sustains the well‐balanced and sign preserving properties of the semi‐discrete scheme. We test the designed method on a number of one‐dimensional and two‐dimensional examples that demonstrate robustness and high resolution of the proposed numerical approach. The data in the last numerical example correspond to the laboratory experiments reported in [L. Cea, M. Garrido, and J. Puertas, Journal of Hydrology, 382 (2010), pp. 88–102], designed to mimic the rain water drainage in urban areas containing houses. Since the rain water depth is typically several orders of magnitude smaller than the height of the houses, we develop a special technique, which helps to achieve a remarkable agreement between the numerical and experimental results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
In modern numerical simulation of problems in energy resources and environmental science, it is important to develop efficient numerical methods for time‐dependent convection–diffusion problems. On the basis of nonstandard covolume grids, we propose a new kind of high‐order upwind finite volume element method for the problems. We first prove the stability and mass conservation in the discrete forms of the scheme. Optimal second‐order error estimate in L2‐norm in spatial step is then proved strictly. The scheme is effective for avoiding numerical diffusion and nonphysical oscillations and has second‐order accuracy. Numerical experiments are given to verify the performance of the scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
An all‐speed algorithm based on the SIMPLE pressure‐correction scheme and the ‘retarded‐density’ approach has been formulated and implemented within an unstructured grid, finite volume (FV) scheme for both incompressible and compressible flows, the latter involving interaction of shock waves. The collocated storage arrangement for all variables is adopted, and the checkerboard oscillations are eliminated by using a pressure‐weighted interpolation method, similar to that of Rhie and Chow [Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA Journal 1983; 21 : 1525]. The solution accuracy is greatly enhanced when a higher‐order convection scheme combined with adaptive mesh refinement (AMR) are used. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
A new numerical scheme, namely space–time conservation element and solution element (CE/SE) method, has been used for the solution of the two‐dimensional (2D) dam‐break problem. Distinguishing from the well‐established traditional numerical methods (such as characteristics, finite difference, finite element, and finite‐volume methods), the CE/SE scheme has many non‐traditional features in both concept and methodology: space and time are treated in a unified way, which is the most important characteristic for the CE/SE method; the CEs and SEs are introduced, both local and global flux conservations in space and time rather than space only are enforced; an explicit scheme with a stagger grid is adopted. Furthermore, this scheme is robust and easy to implement. In this paper, an improved CE/SE scheme is extended to solve the 2D shallow water equations with the source terms, which usually plays a critical role in dam‐break flows. To demonstrate the accuracy, robustness and efficiency of the improved CE/SE method, both 1D and 2D dam‐break problems are simulated numerically, and the results are consistent with either the analytical solutions or experimental results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
We present a γ‐model BGK scheme for the numerical simulation of compressible multifluids. The scheme is based on the incorporation of a conservative γ‐model scheme given in (J. Comput. Phys. 1996; 125 :150–160) into the gas kinetic BGK scheme (J. Comput. Phys. 1993; 109 :53–66, J. Comput. Phys. 1994; 114 :9–17), and is simple to implement. Several numerical examples presented in this paper validate the scheme in the application of compressible multimaterial flows. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
A new hybrid scheme is proposed, which combines the improved third‐order weighted essentially non‐oscillatory (WENO) scheme presented in this paper with a fourth‐order central scheme by a novel switch. Two major steps have been gone through for the construction of a high‐performance and stable hybrid scheme. Firstly, to enhance the WENO part of the hybrid scheme, a new reference smoothness indicator has been devised, which, combined with the nonlinear weighting procedure of WENO‐Z, can drive the third‐order WENO toward the optimal linear scheme faster. Secondly, to improve the hybridization with the central scheme, a hyperbolic tangent hybridization switch and its efficient polynomial counterpart are devised, with which we are able to fix the threshold value introduced by the hybridization. The new hybrid scheme is thus formulated, and a set of benchmark problems have been tested to verify the performance enhancement. Numerical results demonstrate that the new hybrid scheme achieves excellent performance in resolving complex flow features, even compared with the fifth‐order classical WENO scheme and WENO‐Z scheme. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents a study of the stationary phenomenon of superheated or metastable liquid jets, flashing into a two‐dimensional axisymmetric domain, while in the two‐phase region. In general, the phenomenon starts off when a high‐pressure, high‐temperature liquid jet emerges from a small nozzle or orifice expanding into a low‐pressure chamber, below its saturation pressure taken at the injection temperature. As the process evolves, crossing the saturation curve, one observes that the fluid remains in the liquid phase reaching a superheated condition. Then, the liquid undergoes an abrupt phase change by means of an oblique evaporation wave. Across this phase change the superheated liquid becomes a two‐phase high‐speed mixture in various directions, expanding to supersonic velocities. In order to reach the downstream pressure, the supersonic fluid continues to expand, crossing a complex bow shock wave. The balance equations that govern the phenomenon are mass conservation, momentum conservation, and energy conservation, plus an equation‐of‐state for the substance. A false‐transient model is implemented using the shock capturing scheme: dispersion‐controlled dissipative (DCD), which was used to calculate the flow conditions as the steady‐state condition is reached. Numerical results with computational code DCD‐2D v1 have been analyzed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号