首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerical oscillation has been an open problem for high‐order numerical methods with increased local degrees of freedom (DOFs). Current strategies mainly follow the limiting projections derived originally for conventional finite volume methods and thus are not able to make full use of the sub‐cell information available in the local high‐order reconstructions. This paper presents a novel algorithm that introduces a nodal value‐based weighted essentially non‐oscillatory limiter for constrained interpolation profile/multi‐moment finite volume method (CIP/MM FVM) (Ii and Xiao, J. Comput. Phys., 222 (2007), 849–871) as an effort to pursue a better suited formulation to implement the limiting projection in schemes with local DOFs. The new scheme, CIP‐CSL‐WENO4 scheme, extends the CIP/MM FVM method by limiting the slope constraint in the interpolation function using the weighted essentially non‐oscillatory (WENO) reconstruction that makes use of the sub‐cell information available from the local DOFs and is built from the point values at the solution points within three neighboring cells, thus resulting a more compact WENO stencil. The proposed WENO limiter matches well the original CIP/MM FVM, which leads to a new scheme of high accuracy, algorithmic simplicity, and computational efficiency. We present the numerical results of benchmark tests for both scalar and Euler conservation laws to manifest the fourth‐order accuracy and oscillation‐suppressing property of the proposed scheme. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Hybrid schemes are very efficient for complex compressible flow simulation. However, for most existing hybrid schemes in literature, empirical problem‐dependent parameters are always needed to detect shock waves and hence greatly decrease the robustness and accuracy of the hybrid scheme. In this paper, based on the nonlinear weights of the weighted essentially non‐oscillatory (WENO) scheme, a novel weighting switch function is proposed. This function approaches 1 with high‐order accuracy in smooth regions and 0 near discontinuities. Then, with the new weighting switch function, a seventh‐order hybrid compact‐reconstruction WENO scheme (HCCS) is developed. The new hybrid scheme uses the same stencil as the fifth‐order WENO scheme, and it has seventh‐order accuracy in smooth regions even at critical points. Numerical tests are presented to demonstrate the accuracy and robustness of both the switch function and HCCS. Comparisons also reveal that HCCS has lower dissipation and less computational cost than the seventh‐order WENO scheme. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, the efficient application of high‐order weighted essentially nonoscillatory (WENO) reconstruction to the subsonic and transonic engineering problems is studied. On the basis of the physical considerations, two techniques are proposed to enhance the accuracy and efficiency of the WENO reconstruction. First, it is observed that the WENO scheme using characteristic variable has better accuracy and convergence speed than the scheme using primitive variable. For engineering problems with shock of moderate amplitude, on the basis of the Rankine–Hugoniot conditions, a simplified characteristic‐variable‐based WENO is developed. The simplified version significantly reduces the cost overhead without sacrificing the shock‐capturing capability. Second, in this work, it is found for viscous case that it is better to include the viscous effect. On the basis of a simple analysis, the viscous correction to the parameter ε in the WENO reconstruction is proposed. Numerical results indicate, with the proposed simplified characteristic‐variable‐based reconstruction and the viscous correction, that the nonlinear WENO interpolation is sharply activated in the region of shock jump, whereas in the shockless area, the WENO interpolation weights are tuned towards the designed optimal value for better accuracy. Compared with the original characteristic‐variable‐based WENO, the current implementation has similar accuracy and reduced cost. At the same time, compared with the primitive variable‐based WENO, better accuracy and convergence speed are obtained at marginal cost overhead. Several practical cases are calculated to demonstrate the accuracy and efficiency of the current methodology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
This paper reports numerical convergence study for simulations of steady shock‐induced combustion problems with high‐resolution shock‐capturing schemes. Five typical schemes are used: the Roe flux‐based monotone upstream‐centered scheme for conservation laws (MUSCL) and weighted essentially non‐oscillatory (WENO) schemes, the Lax–Friedrichs splitting‐based non‐oscillatory no‐free parameter dissipative (NND) and WENO schemes, and the Harten–Yee upwind total variation diminishing (TVD) scheme. These schemes are implemented with the finite volume discretization on structured quadrilateral meshes in dimension‐by‐dimension way and the lower–upper symmetric Gauss–Seidel (LU–SGS) relaxation method for solving the axisymmetric multispecies reactive Navier–Stokes equations. Comparison of iterative convergence between different schemes has been made using supersonic combustion flows around a spherical projectile with Mach numbers M = 3.55 and 6.46 and a ram accelerator with M = 6.7. These test cases were regarded as steady combustion problems in literature. Calculations on gradually refined meshes show that the second‐order NND, MUSCL, and TVD schemes can converge well to steady states from coarse through fine meshes for M = 3.55 case in which shock and combustion fronts are separate, whereas the (nominally) fifth‐order WENO schemes can only converge to some residual level. More interestingly, the numerical results show that all the schemes do not converge to steady‐state solutions for M = 6.46 in the spherical projectile and M = 6.7 in the ram accelerator cases on fine meshes although they all converge on coarser meshes or on fine meshes without chemical reactions. The result is based on the particular preconditioner of LU–SGS scheme. Possible reasons for the nonconvergence in reactive flow simulation are discussed.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
We put forth a dynamic computing framework for scale‐selective adaptation of weighted essential nonoscillatory (WENO) schemes for the simulation of hyperbolic conservation laws exhibiting strong discontinuities. A multilevel wavelet‐based multiresolution procedure, embedded in a conservative finite volume formulation, is used for a twofold purpose. (i) a dynamic grid adaptation of the solution field for redistributing grid points optimally (in some sense) according to the underlying flow structures, and (ii) a dynamic minimization of the in built artificial dissipation of WENO schemes. Taking advantage of the structure detection properties of this multiresolution algorithm, the nonlinear weights of the conventional WENO implementation are selectively modified to ensure lower dissipation in smoother areas. This modification is implemented through a linear transition from the fifth‐order upwind stencil at the coarsest regions of the adaptive grid to a fully nonlinear fifth‐order WENO scheme at areas of high irregularity. Therefore, our computing algorithm consists of a dynamic grid adaptation strategy, a scale‐selective state reconstruction, a conservative flux calculation, and a total variation diminishing Runge‐Kutta scheme for time advancement. Results are presented for canonical examples drawn from the inviscid Burgers, shallow water, Euler, and magnetohydrodynamic equations. Our findings represent a novel direction for providing a scale‐selective dissipation process without a compromise on shock capturing behavior for conservation laws, which would be a strong contender for dynamic implicit large eddy simulation approaches.  相似文献   

6.
High‐speed compressible turbulent flows typically contain discontinuities and have been widely modeled using Weighted Essentially Non‐Oscillatory (WENO) schemes due to their high‐order accuracy and sharp shock capturing capability. However, such schemes may damp the small scales of turbulence and result in inaccurate solutions in the context of turbulence‐resolving simulations. In this connection, the recently developed Targeted Essentially Non‐Oscillatory (TENO) schemes, including adaptive variants, may offer significant improvements. The present study aims to quantify the potential of these new schemes for a fully turbulent supersonic flow. Specifically, DNS of a compressible turbulent channel flow with M = 1.5 and Reτ = 222 is conducted using OpenSBLI, a high‐order finite difference computational fluid dynamics framework. This flow configuration is chosen to decouple the effect of flow discontinuities and turbulence and focus on the capability of the aforementioned high‐order schemes to resolve turbulent structures. The effect of the spatial resolution in different directions and coarse grid implicit LES are also evaluated against the WALE LES model. The TENO schemes are found to exhibit significant performance improvements over the WENO schemes in terms of the accuracy of the statistics and the resolution of the three‐dimensional vortical structures. The sixth‐order adaptive TENO scheme is found to produce comparable results to those obtained with nondissipative fourth‐ and sixth‐order central schemes and reference data obtained with spectral methods. Although the most computationally expensive scheme, it is shown that this adaptive scheme can produce satisfactory results if used as an implicit LES model.  相似文献   

7.
In this article, we present two improved third‐order weighted essentially nonoscillatory (WENO) schemes for recovering their design‐order near first‐order critical points. The schemes are constructed in the framework of third‐order WENO‐Z scheme. Two new global smoothness indicators, τL3 and τL4, are devised by a nonlinear combination of local smoothness indicators (ISk) and reference values (ISG) based on Lagrangian interpolation polynomial. The performances of the proposed schemes are evaluated on several numerical tests governed by one‐dimensional linear advection equation or one‐ and two‐dimensional Euler equations. Numerical results indicate that the presented schemes provide less dissipation and higher resolution than the original WENO3‐JS and subsequent WENO3‐N scheme.  相似文献   

8.
A new third‐order WENO scheme is proposed to achieve the desired order of convergence at the critical points for scalar hyperbolic equations. A new reference smoothness indicator is introduced, which satisfies the sufficient condition on the weights for the third‐order convergence. Following the truncation error analysis, we have shown that the proposed scheme achieves the desired order accurate for smooth solutions with arbitrary number of vanishing derivatives if the parameter ε satisfies certain conditions. We have made a comparative study of the proposed scheme with the existing schemes such as WENO‐JS, WENO‐Z, and WENO‐N3 through different numerical examples. The result shows that the proposed scheme (WENO‐MN3) achieves better performance than these schemes.  相似文献   

9.
Hermite weighted essentially non‐oscillatory (HWENO) methods were introduced in the literature, in the context of Euler equations for gas dynamics, to obtain high‐order accuracy schemes characterized by high compactness (e.g. Qiu and Shu, J. Comput. Phys. 2003; 193 :115). For example, classical fifth‐order weighted essentially non‐oscillatory (WENO) reconstructions are based on a five‐cell stencil whereas the corresponding HWENO reconstructions are based on a narrower three‐cell stencil. The compactness of the schemes allows easier treatment of the boundary conditions and of the internal interfaces. To obtain this compactness in HWENO schemes both the conservative variables and their first derivatives are evolved in time, whereas in the original WENO schemes only the conservative variables are evolved. In this work, an HWENO method is applied for the first time to the shallow water equations (SWEs), including the source term due to the bottom slope, to obtain a fourth‐order accurate well‐balanced compact scheme. Time integration is performed by a strong stability preserving the Runge–Kutta method, which is a five‐step and fourth‐order accurate method. Besides the classical SWE, the non‐homogeneous equations describing the time and space evolution of the conservative variable derivatives are considered here. An original, well‐balanced treatment of the source term involved in such equations is developed and tested. Several standard one‐dimensional test cases are used to verify the high‐order accuracy, the C‐property and the good resolution properties of the model. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, we present a class of high‐order accurate cell‐centered arbitrary Lagrangian–Eulerian (ALE) one‐step ADER weighted essentially non‐oscillatory (WENO) finite volume schemes for the solution of nonlinear hyperbolic conservation laws on two‐dimensional unstructured triangular meshes. High order of accuracy in space is achieved by a WENO reconstruction algorithm, while a local space–time Galerkin predictor allows the schemes to be high order accurate also in time by using an element‐local weak formulation of the governing PDE on moving meshes. The mesh motion can be computed by choosing among three different node solvers, which are for the first time compared with each other in this article: the node velocity may be obtained either (i) as an arithmetic average among the states surrounding the node, as suggested by Cheng and Shu, or (ii) as a solution of multiple one‐dimensional half‐Riemann problems around a vertex, as suggested by Maire, or (iii) by solving approximately a multidimensional Riemann problem around each vertex of the mesh using the genuinely multidimensional Harten–Lax–van Leer Riemann solver recently proposed by Balsara et al. Once the vertex velocity and thus the new node location have been determined by the node solver, the local mesh motion is then constructed by straight edges connecting the vertex positions at the old time level tn with the new ones at the next time level tn + 1. If necessary, a rezoning step can be introduced here to overcome mesh tangling or highly deformed elements. The final ALE finite volume scheme is based directly on a space–time conservation formulation of the governing PDE system, which therefore makes an additional remapping stage unnecessary, as the ALE fluxes already properly take into account the rezoned geometry. In this sense, our scheme falls into the category of direct ALE methods. Furthermore, the geometric conservation law is satisfied by the scheme by construction. We apply the high‐order algorithm presented in this paper to the Euler equations of compressible gas dynamics as well as to the ideal classical and relativistic magnetohydrodynamic equations. We show numerical convergence results up to fifth order of accuracy in space and time together with some classical numerical test problems for each hyperbolic system under consideration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Accurate computations of two‐dimensional turbulent hypersonic shock–shock interactions that arise when single and dual shocks impinge on the bow shock in front of a cylinder are presented. The simulation methods used are a class of lower–upper symmetric‐Gauss–Seidel implicit anti‐diffusive weighted essentially non‐oscillatory (WENO) schemes for solving the compressible Navier–Stokes equations with Spalart–Allmaras one‐equation turbulence model. A numerical flux of WENO scheme with anti‐diffusive flux correction is adopted, which consists of first‐order and high‐order fluxes and allows for a more flexible choice of first‐order dissipative methods. Experimental flow fields of type IV shock–shock interactions with single and dual incident shocks by Wieting are computed. By using the WENO scheme with anti‐diffusive flux corrections, the present solution indicates that good accuracy is maintained and contact discontinuities are sharpened markedly as compared with the original WENO schemes on the same meshes. Computed surface pressure distribution and heat transfer rate are also compared with experimental data and other computational results and good agreement is found. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
This work describes the implementation and analysis of high‐order accurate schemes applied to high‐speed flows on unstructured grids. The class of essentially non‐oscillatory schemes (ENO), that includes weighted ENO schemes (WENO), is discussed in the paper with regard to the implementation of third‐ and fourth‐order accurate methods. The entire reconstruction process of ENO and WENO schemes is described with emphasis on the stencil selection algorithms. The stencils can be composed by control volumes with any number of edges, e.g. triangles, quadrilaterals and hybrid meshes. In the paper, ENO and WENO schemes are implemented for the solution of the dimensionless, 2‐D Euler equations in a cell centred finite volume context. High‐order flux integration is achieved using Gaussian quadratures. An approximate Riemann solver is used to evaluate the fluxes on the interfaces of the control volumes and a TVD Runge–Kutta scheme provides the time integration of the equations. Such a coupling of all these numerical tools, together with the high‐order interpolation of primitive variables provided by ENO and WENO schemes, leads to the desired order of accuracy expected in the solutions. An adaptive mesh refinement technique provides better resolution in regions with strong flowfield gradients. Results for high‐speed flow simulations are presented with the objective of assessing the implemented capability. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
A simple methodology for a high‐resolution scheme to be applied to compressible multicomponent flows with shock waves is investigated. The method is intended for use with direct numerical simulation or large eddy simulation of compressible multicomponent flows. The method dynamically adds non‐linear artificial diffusivity locally in space to capture different types of discontinuities such as a shock wave, contact surface or material interface while a high‐order compact differencing scheme resolves a broad range of scales in flows. The method is successfully applied to several one‐dimensional and two‐dimensional compressible multicomponent flow problems with shock waves. The results are in good agreement with experiments and earlier computations qualitatively and quantitatively. The method captures unsteady shock and material discontinuities without significant spurious oscillations if initial start‐up errors are properly avoided. Comparisons between the present numerical scheme and high‐order weighted essentially non‐oscillatory (WENO) schemes illustrate the advantage of the present method for resolving a broad range of scales of turbulence while capturing shock waves and material interfaces. Also the present method is expected to require less computational cost than popular high‐order upwind‐biased schemes such as WENO schemes. The mass conservation for each species is satisfied due to the strong conservation form of governing equations employed in the method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, sixth‐order monotonicity‐preserving optimized scheme (OMP6) for the numerical solution of conservation laws is developed on the basis of the dispersion and dissipation optimization and monotonicity‐preserving technique. The nonlinear spectral analysis method is developed and is used for the purpose of minimizing the dispersion errors and controlling the dissipation errors. The new scheme (OMP6) is simple in expression and is easy for use in CFD codes. The suitability and accuracy of this new scheme have been tested through a set of one‐dimensional, two‐dimensional, and three‐dimensional tests, including the one‐dimensional Shu–Osher problem, the two‐dimensional double Mach reflection, and the Rayleigh–Taylor instability problem, and the three‐dimensional direct numerical simulation of decaying compressible isotropic turbulence. All numerical tests show that the new scheme has robust shock capturing capability and high resolution for the small‐scale waves due to fewer numerical dispersion and dissipation errors. Moreover, the new scheme has higher computational efficiency than the well‐used WENO schemes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we propose a high‐order finite volume hybrid kinetic Weighted Essentially Non‐Oscillatory (WENO) scheme for inviscid and viscous flows. Based on the WENO reconstruction technique, a hybrid kinetic numerical flux is introduced for the present method, which includes the mechanisms of both the free transfer and the collision of gas molecules. The collisionless free transfer part of the hybrid numerical flux is constructed from the conventional kinetic flux vector splitting treatment, and the collision contribution is considered by constructing an equilibrium gas state and calculating the corresponding numerical flux at the cell interface. The total variation diminishing Runge–Kutta methods are used for the temporal integration. The high‐order accuracy and good shock‐capturing capability of the proposed hybrid kinetic WENO scheme are validated by many numerical examples in one‐dimensional and two‐dimensional cases. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
加权型紧致格式与加权本质无波动格式的比较   总被引:3,自引:3,他引:0  
张树海 《力学学报》2016,48(2):336-347
线性紧致格式和加权本质无波动格式是两种典型的高阶精度数值格式,它们各有优缺点.线性紧致格式在具有高阶精度的同时,格式的分辨率也比较高,耗散低,是计算多尺度流场结构的较好格式,但是不能计算具有强激波的流场.加权本质无波动格式是一种高阶精度捕捉激波格式,鲁棒性好,但耗散比较高,分辨率也不理想.近年来,在莱勒的线性紧致格式基础上,采用加权本质无波动格式捕捉激波思想,发展了一系列加权型紧致格式.本文较全面地比较了加权型紧致格式和加权本质无波动格式,包括构造方法、鲁棒性、分辨率、耗散特性、收敛特性以及并行计算效率.结果表明,现有的加权型紧致格式基本保持了加权本质无波动格式的性质,对于气动力等宏观量的计算,比加权本质无波动格式没有明显的优势.   相似文献   

17.
The calculation of the weight of each substencil is very important for a weighted essentially nonoscillatory (WENO) scheme to obtain high‐order accuracy in smooth regions and keep the essentially nonoscillatory property near discontinuities. The weighting function introduced in the WENO‐Z scheme provides a straightforward method to analyze the accuracy order in smooth regions. In this paper, we construct a new sixth‐order global smoothness indicator (GSI‐6) and a function about GSI‐6 and the local smoothness indicators (ISk) to calculate the weights. The analysis and numerical results show that, with the new weights, the scheme satisfies the sufficient condition for the fifth‐order convergence in smooth regions even at critical points. Meanwhile, it can also maintain low dissipation for discontinuous solutions due to relative large weights assigned to discontinuous substencils.  相似文献   

18.
A new hybrid scheme is proposed, which combines the improved third‐order weighted essentially non‐oscillatory (WENO) scheme presented in this paper with a fourth‐order central scheme by a novel switch. Two major steps have been gone through for the construction of a high‐performance and stable hybrid scheme. Firstly, to enhance the WENO part of the hybrid scheme, a new reference smoothness indicator has been devised, which, combined with the nonlinear weighting procedure of WENO‐Z, can drive the third‐order WENO toward the optimal linear scheme faster. Secondly, to improve the hybridization with the central scheme, a hyperbolic tangent hybridization switch and its efficient polynomial counterpart are devised, with which we are able to fix the threshold value introduced by the hybridization. The new hybrid scheme is thus formulated, and a set of benchmark problems have been tested to verify the performance enhancement. Numerical results demonstrate that the new hybrid scheme achieves excellent performance in resolving complex flow features, even compared with the fifth‐order classical WENO scheme and WENO‐Z scheme. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
A novel class of weighted essentially nonoscillatory (WENO) schemes based on Hermite polynomials,termed as HWENO schemes,is developed and applied as limiters for high order discontinuous Galerkin (DG) method on triangular grids.The developed HWENO methodology utilizes high-order derivative information to keep WENO reconstruction stencils in the von Neumann neighborhood.A simple and efficient technique is also proposed to enhance the smoothness of the existing stencils,making higher-order scheme stable and simplifying the reconstruction process at the same time.The resulting HWENO-based limiters are as compact as the underlying DG schemes and therefore easy to implement.Numerical results for a wide range of flow conditions demonstrate that for DG schemes of up to fourth order of accuracy,the designed HWENO limiters can simultaneously obtain uniform high order accuracy and sharp,essentially non-oscillatory shock transition.  相似文献   

20.
This work investigates high‐order central compact methods for simulating turbulent supersonic flows that include shock waves. Several different types of previously proposed characteristic filters, including total variation diminishing, monotone upstream‐centered scheme for conservation laws, and weighted essentially non‐oscillatory filters, are investigated in this study. Similar to the traditional shock capturing schemes, these filters can eliminate the numerical instability caused by large gradients in flow fields, but they also improve efficiency compared with classical shock‐capturing schemes. Adding the nonlinear dissipation part of a classical shock‐capturing scheme to a central scheme makes the method suitable for incorporation into any existing central‐based high‐order subsonic code. The amount of numerical dissipation to add is sensed by means of the artificial compression method switch. In order to improve the performance of the characteristic filters, we propose a hybrid approach to minimize the dissipation added by the characteristic filter. Through several numerical experiments (including a shock/density wave interaction, a shock/vortex interaction, and a shock/mixing layer interaction) we show that our hybrid approach works better than the original method, and can be used for future turbulent flow simulations that include shocks. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号