首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Novel layer-by-layer (LbL) assembly films composed of poly( L-lysine) (PLL) and poly( D-lactic acid) (PDLA) were prepared by the alternate immersion of a gold substrate into an aqueous PLL solution and an acetonitrile solution of PDLA. The formation of the LbL assembly film was confirmed by quartz crystal microbalance (QCM) analysis, atomic force microscopy observation, and attenuated total reflection Fourier transform infrared spectroscopy measurement. The driving force responsible for the LbL assembly was determined by investigating the formation behavior of the LbL assembly under various conditions. The formation of the LbL assembly was not affected either by the stereochemistry of polylysine and poly(lactic acid) or by the addition of urea, which is known to inhibit hydrogen bonding interaction between polymers, into the aqueous PLL solution. The LbL assembly was also formed by the combination of PDLA and polycations other than polylysine, such as poly(diallyldimethylammonium chloride). On the other hand, the combination of PDLA and any polyanions such as poly(styrene sulfonate sodium salt) produced little corresponding LbL assembly. The increase in positive charge on the amino nitrogen atom of PLL enhanced the LbL assembly. These results suggest that the LbL assembly film composed of PLL and PDLA was fabricated by cation-dipole interactions between the positive charge on the amino nitrogen atom of PLL and the lone pairs of the carbonyl oxygen atom of PDLA.  相似文献   

2.
仝维鋆 《高分子科学》2012,30(5):719-726
To improve the colloidal stability of bovine serum albumin(BSA) nanoparticles(NPs) in diverse mediums, poly(allylamine hydrochloride)(PAH)/sodium poly(4-styrene sulfonate)(PSS) multilayers and poly(allylamine hydrochloride)-graft-poly(ethylene glycol)(PAH-g-PEG) coating were coated on the surface of BSA NPs.Stabilities of the BSA NPs in diverse mediums with different surfaces were detected by dynamic light scattering(DLS).Multilayers and PAH-g-PEG coated BSA NPs can be well dispersed in various mediums with a narrow polydispersity index(PDI).The BSA NPs with the highest surface density of PEG show the best stability.The multilayers and PAH-g-PEG coating do not deter the pH-dependent loading and release property of BSA NPs.At pH 9,the encapsulation efficiency of doxorubicin reaches almost 99%,and the release rate at pH 5.5 is significantly higher than that at pH 7.4.  相似文献   

3.
Novel photochromic inorganic-organic multilayers composed of polyoxometalates and poly(ethylenimine) have been prepared by the layer-by-layer (LbL) self-assembly method. The growth process, composition, surface topography, and photochromic properties of the multilayer films were investigated by UV-visible and Fourier transform infrared spectroscopy, atomic force microscopy, electrospin resonance (ESR), and X-ray photoelectron spectroscopy (XPS). Irradiated with ultraviolet light, the transparent films changed from colorless to blue. Moreover, the blue films showed good reversibility of photochromism and could recover the colorless state gradually in air, where oxygen plays an important role in the bleaching process. On account of the ESR and XPS results, parts of W6+ in multilayers were reduced to W5+, which exhibited a characteristic blue; a possible photochromic mechanism can be speculated. This work provides basic guideline for the assembly of multilayers with photochromic properties.  相似文献   

4.
The interaction of poly(2-hydroxyethyl methacrylate) [poly(HEMA)] and other similar hydrogels with dilute urea solution has been studied by a variety of techniques, including swelling experiments, fluorescence quenching, near infrared spectroscopy and fundamental band infrared spectroscopy. The results obtained indicate that the anomalous swelling behavior of poly(HEMA) gels in the presence of such dilute urea solutions is probably not due to the disruption of a secondary hydrophobic bond structure as has been generally believed. Although poly(HEMA) gels do contain sites that can participate in hydrophobic bonding, the evidence gathered indicates that dilute urea solutions have no effect on such bonds. A plausible model that does fit all the data involves the interaction of urea with a secondary structure composed of hydrogen-bonded hydroxyl groups, stabilized by the exclusion of water molecules from the regions containing the bonds.  相似文献   

5.
The interaction between poly(L-glutamic acid) (PLE) and calcite crystals was studied with AFM-based single molecule force spectroscopy. Block copolymers of poly(ethylene oxide) (PEO) and PLE were synthesized and covalently attached to the tip of an AFM cantilever. In desorption measurements the molecules were allowed to adsorb on the calcite crystal faces and afterward successively desorbed. The corresponding desorption forces were detected with high precision, showing for example a force transition between the two blocks. Because of its importance in the crystallization process in biominerals, the PLE-calcite interaction was investigated as a function of the pH as well as the calcium concentration of the aqueous solution. The sensitivity of the technique was underlined by resolving different interaction forces for calcite (104) and calcite (100).  相似文献   

6.
A novel strategy for the preparation of thin hydrogel coatings on top of polymer bulk materials was elaborated for the example of poly(ethylene terephthalate) (PET) surfaces layered with poly(vinylpyrrolidone) (PVP). PVP layers were deposited on PET foils or SiO2 surfaces (silicon wafer or glass coverslips) precoated with PET and subsequently cross-linked by electron beam treatment. The obtained films were characterized by ellipsometry, X-ray photoelectron spectroscopy, infrared spectroscopy in attenuated total reflection, atomic force microscopy (AFM), and electrokinetic measurements. Ellipsometric experiments and AFM force-distance measurements showed that the cross-linked layers swell in aqueous solutions by a factor of about 7. Electrokinetic experiments indicated a strong hydrodynamic shielding of the charge of the underlying PET layer by the hydrogel coatings and further proved that the swollen films were stable against shear stress and variation of pH. In conclusion, electron beam cross-linking ofpreadsorbed hydrophilic polymers permits a durable fixation of swellable polymer networks on polymer supports which can be adapted to materials in a wide variety of shapes.  相似文献   

7.
The buildup mechanism of polypeptide multilayers prepared by the layer-by-layer deposition of a polyanion (poly(L-glutamic acid) (PGA)) and polycations (poly(L-lysine) (PLL), poly(D-lysine) (PDL), and copoly(DL-lysine)(PDLL)) was reinvestigated by using in situ ATR-IR spectroscopy. A difference spectral technique applied to analyze the spectra indicated that the deposition of both the PGA and PLL (PDL) layers accompanies the formation of secondary structures consisting mainly of the antiparallel pleated sheet (the beta-sheet) structure, and that the formation of the beta-sheet structure cannot always be explained in terms of polyanion/polycation complex formation or charge compensation between the polyanion and polycations, although it has been considered as a major process in the multilayer buildup process. Instead, the present paper proposes the following mechanism. During the deposition of the polyelectrolyte, a small amount of the beta-sheet structures are produced at the interface as a result of charge compensation between a polyelectrolyte and an oppositely charged polyelectrolyte in the multilayer. The beta-sheets act as nuclei from which further propagation of the structure takes place at the solution/multilayer interfaces. The driving force of the buildup process in the new mechanism is a kinetically favorable insolubilization of each polyelectrolyte in solution at the interfaces.  相似文献   

8.
Polymer-supported lipid bilayer is a key enabling technology for the design and fabrication of novel biomimetic devices. To date, the physical driving force underlying the formation of polymer-supported lipid bilayer remains to be determined. In this study, the interaction between dipalmitoylphosphocholine (DPPC) vesicle and poly(ethylene terephthalate) [PET] surface with or without grafted poly(acrylic acid) [PAA] layer is examined with several biophysical techniques. First, vesicle deformation analysis shows that the geometry of adherent vesicle on either plain PET or PAA-grafted PET surface is best described by a truncated sphere model. At neutral pH, the degree of deformation and adhesion energy are unaltered by the grafted polymerization of acrylic acid on PET surface. Interestingly, the average magnitude of adhesion energy is increased by 185% and −43% on PAA-grated PET and plain PET surface, respectively, towards an increase of pH at room temperature. Our results demonstrate the possibility of tuning the adhesive interaction between vesicle and polymer cushion through the control of polyelectrolyte ionization on the solid support.  相似文献   

9.
The complexation of ultrahigh-molecular-weight poly(ethylene oxide) (PEO) with urea in both the solid and molten states was studied by infrared spectroscopy. Information about the temperature dependences of the absorption bands in the 3600–2600 and 1300–600 cm?1 region on heating and cooling was obtained. Some conclusions concerning the interaction between PEO and urea were also made. The formation of a high temperature, metastable molecular complex between PEO and urea, which is susceptible to undercooling, was confirmed spectroscopically. Heating to 85–90°C resulted in a molecular complex stable at room temperature.© 1994 John Wiley & Sons, Inc.  相似文献   

10.
Protein adsorption was studied by in-situ ATR-FT-IR spectroscopy of consecutively deposited polyelectrolyte multilayer systems terminated either with poly(ethyleneimine) (PEI) or polyanions, such as poly-(acrylic acid) (PAC), poly(maleic acid-co-propylene) (PMA-P) or poly(vinyl sulfate) (PVS). The influence of the polyanion type, pH and ionic strength was investigated. Negatively charged human serum albumin (HSA) was strongly repelled by multilayers terminated with weak polyanions (PAC, PMA-P), whereas moderate attraction was observed for those terminated with the strong polyanion PVS. Changing the pH from 7.4 to 5 resulted in enhanced HSA adsorption onto PAC-terminated multilayers. An increase in ionic strength diminished the attractive HSA adsorption onto PEI-terminated multilayers. For the PEI/PAC system, the biomedically relevant adsorption of human fibrinogen (FGN) is determined via its isoelectric point in accordance with three other proteins.  相似文献   

11.
The interaction of 1-anilinonaphthalene-8-sulphonate (ANS) with cross-linked poly(N-vinyl-2-pyrrolidone) (CPVP) was studied by the adsorption technique at different temperatures and at two different pH values. Analysis by the Scatchard method and the study made in the presence of urea showed that the iceberg structure of water affects the sorption of ANS to CPVP, leading to cooperativity. The observed Giles sorption isotherms at both the pH values were of theL-type which indicated the interaction of ANS in flat configuration with the binding site in CPVP. The sorption of ANS to CPVP was enhanced considerably at acidic pH due to some structural factors which also resulted in multilayer sorption at this pH. Comparison of binding of ANS to CPVP and to linear poly(N-vinyl-2-pyrrolidone) demonstrated the greater contribution of hydrophobic interaction in CPVP than in the linear polymer.  相似文献   

12.
Vaidya B  Soper SA  McCarley RL 《The Analyst》2002,127(10):1289-1292
Poly(carbonate), PC, surfaces are chemically modified by treatment with sulfur trioxide gas. Sulfur trioxide gas sulfonates the aromatic rings of the poly(carbonate) surfaces, making the surfaces more hydrophilic. Sulfonation of the poly(carbonate) surface is confirmed by infrared spectroscopy. The modified polymer surfaces are found to be smoother in comparison to their unmodified counterparts, as noted by scanning force microscopy. The effects of the surface modification on electroosmotic flow are studied at a pH range of 4-10. The electroosmotic flow in sulfonated poly(carbonate) microchannels was found to be significantly higher than that in unmodified poly(carbonate) microchannels at pH values below 8.  相似文献   

13.
The single-chain nanomechanical properties of poly(N-vinyl-2-pyrrolidone) (PVPr) and povidone-iodine (PVPr-I2) under different solution conditions have been investigated by using an atomic force microscopy based technique-single-molecule force spectroscopy. The force-extension curve (force curve) of PVPr in water is markedly deviated from that obtained in ethanol or tetrahydrofuran, suggesting a different interaction between PVPr and the solvents. Moreover, we have comparatively studied the force signals of PVPr-I2 and PVPr in an aqueous solution of KI or KI3 and found that only KI3 influences the elastic property of PVPr dramatically. These experimental results indicate that there exists a specific interaction between PVPr and KI3, which is also supported by Fourier transform infrared data. By the integration of the deviated area between the force curve and the modified freely jointed chain fitting curve, we estimate that the energy needed to destroy the interaction between PVPr and water is 5.3 kT and between PVPr and KI3 is 3.6 kT per repeating unit, respectively.  相似文献   

14.
In this study CO2, H2/H2O and H2O low pressure plasma treatment of poly(tetrafluoroethylene) (PTFE) foils and of thin plasma deposited fluorocarbon polymer (PDFP) films with a structure close to PTFE was investigated. The properties of the plasma were analyzed by mass spectroscopy (MS) and optical emission spectroscopy (OES). The modified fluorocarbon surfaces were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), fourier transform infrared (FTIR) spectroscopy, spectroscopic ellipsometry, electrokinetic measurements and dynamic contact angle measurements in order to find optimized treatment conditions. The results of the surface modification were compared with respect to the efficiency of the plasma treatment and the stability of the modification effect at different ambient conditions. It was shown that the H2O plasma treatment is the most effective process for the intended modification. The hydrophobic PTFE surface was converted into a more hydrophilic one. The introduced radicals after the H2O plasma treatment can be utilized subsequently for post plasma reactions such as grafting processes.  相似文献   

15.
The interactions of pig gastric mucin and bovine submaxillary mucin with carboxylate (PCM) and amino (PAM) polystyrene latexes with 750 and 1000 nm diameters have been studied in vitro. The mucin interaction increased when the pH decreased from 7.4 to 3.0 and when the electrolyte concentration increased from 86 to 205 mM. The driving force of the interaction was very probably nonionic. Under certain conditions, electrostatic attraction also was important for PAM. Under all experimental conditions tested, the mucins interacted less with PAM than with PCM. The functional groups of the latexes directed the conformation of the adsorbed mucins at the interface. At low pH, the mucins probably were adsorbed in multilayers.  相似文献   

16.
Interpolymer complexation of poly(acrylic acid) with poly(acrylamide) and hydrolysed poly(acrylamide) was studied by fluorescence spectroscopy and viscometry in dilute aqueous solutions. Changes in chain conformation and flexibility due to the interpolymer association are reflected in the intramolecular excimer fluorescence of pyrene groups covalently attached to the polymer chain. Both poly(acrylamide) and hydrolysed poly(acrylamide) form stable complexes with poly(acrylic acid) at low pH. The molecular weight of poly(acrylic acid) and solution properties such as pH and ionic strength were found to influence the stability and the structure of the complexes. In addition, the polymer solutions mixing time showed an effect on the mean stoichiometry of the complex. The intrinsic viscosity of the solutions of mixed polymers at low pH suggested a compact polymer structure for the complex.  相似文献   

17.
Soluble fluorine containing poly(amide-imide)s, PAI(1-4), were synthesized from diimide-dicarboxylic acid, 2,2-bis[N-(4-carboxyphenyl)-phthalimide-1,4-yl]hexafluoropropane with various diamines by direct polycondensation in N-methyl-2-pyrrolidone (NMP) containing CaCl2 and using triphenyl phosphite and pyridine as condensing agents. The polymers were readily soluble in aprotic polar solvents such as NMP, N,N-dimethylacetamide, dimethyl sulfoxide and tetrahydrofuran. Their Langmuir monolayers were studied at the air/water interface. The monolayers were generally stable at the water surface and could be reproducibly transferred onto solid substrates to build up Langmuir-Blodgett (LB) multilayers. The LB mono- and multilayers were characterized by ultra-violet/visible spectroscopy (UV-Vis), surface plasmon resonance, atomic force microscopy.  相似文献   

18.
A new approach for the fabrication of a multilayer film assembly is explored, which is based on the alternating assembling of poly(4-vinylpyridine) and poly(acrylic acid) via hydrogen bonding. The homogeneous multilayer films were characterized by UV-Vis, X-ray diffraction and atomic force microscopy (AFM) measurements. The nature of interaction between the two polymers is identified as hydrogen bonding by IR spectroscopy.  相似文献   

19.
Morphological changes of poly(acrylic acid)/poly(diallyldimethylammonium chloride) multilayers induced by low pH were investigated by scanning force microscopy. The weakened interaction between the charged polymer chains in the protonation process is believed to be the reason for this variation. Kinetic studies have shown that during protonation phase separation and dissociation of the multilayers took place successively. The compression of the multilayers, however, caused a transition of the multilayers from a rubbery state to a glassy state. As a result, the closely compacted multilayers lost their sensitivity to pH change. An increase of electrostatic and hydrophobic interactions, can decrease the free energy of the multilayers, and stabilize the films. By compression of the multilayers with a rubber stamp having geometric patterns, films with spatially localized pores were produced.  相似文献   

20.
The self-assembly of hybrid CdTe/poly(N-isopropylacrylamide-acrylic acid) [poly(NIPAM-AAc)] microgels was tunable in response to pH stimuli. The pH-dependent swelling behavior of the polymer microgels played an important role in the self-assembly processes. At pH 3.73, the fractal and dendritic patterns of CdTe/poly(NIPAM-AAc) were fabricated on a large scale, in which the dipole moment of CdTe provided a significant driving force. At pH 11.28, the microgels aggregated and amalgamated to form a porous film and phase separation occurred between the CdTe nanocrystals and poly(NIPAM-AAc). The combination of the physical and chemical properties of inorganic CdTe nanocrystals with those of organic smart polymers provides a new opportunity for controllable self-assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号