首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herein, a detailed investigation of the surface modification of a zinc oxide (ZnO) nanorod electrode with FeOOH nanoparticles dispersed in glycine was conducted to improve the water oxidation reaction assisted by sunlight. The results were systematically analysed in terms of the general parameters (light absorption, charge separation, and surface for catalysis) that govern the photocurrent density response of metal oxide as photoanode in a photoelectrochemical (PEC) cell. ZnO electrodes surface were modified with different concentration of FeOOH nanoparticles using the spin-coating deposition method, and it was found that 6-layer deposition of glycine-FeOOH nanoparticles is the optimum condition. The glycine plays an important role decreasing the agglomeration of FeOOH nanoparticles over the ZnO electrode surface and increasing the overall performance. Comparing bare ZnO electrodes with the ones modified with glycine-FeOOH nanoparticles an enhanced photocurrent density can be observed from 0.27 to 0.57 mA/cm2 at 1.23 VRHE under sunlight irradiation. The impedance spectroscopy data aid us to conclude that the higher photocurrent density is an effect associated with more efficient surface for chemical reaction instead of electronic improvement. Nevertheless, the charge separation efficiency remains low for this system. The present discovery shows that the combination of glycine-FeOOH nanoparticle is suitable and environmentally-friend cocatalyst to enhance the ZnO nanorod electrode activity for the oxygen evolution reaction assisted by sunlight irradiation.  相似文献   

2.
An ITO electrode was coated with a nanoporous TiO2 film, and the film was loaded with Au nanoparticles with different diameters (15, 40 and 100 nm). The electrode exhibited plasmon-induced photocurrents in the presence of Fe(2+/3+) couple under visible light (lambda > 420 nm). The quantum efficiency increased with increasing particle size, whereas the maximum photocurrent density decreased.  相似文献   

3.
Dye-sensitized solar cells (DSSCs) have established themselves as an alternative to conventional solar cells owing to their remarkably high power conversion efficiency, longtime stability and low-cost production. DSSCs composed of a dyed oxide semiconductor photoanode, a redox electrolyte and a counter electrode. In these devices, conversion efficiency is achieved by ultra-fast injection of an electron from a photo excited dye into the conduction band of metal oxide followed by subsequent dye regeneration and holes transportation to the counter electrode. The energy conversion efficiency of DSSC is to be dependent on the morphology and structure of the dye adsorbed metal oxide photoanode. Worldwide considerable efforts of DSSCs have been invested in morphology control of photoanode film, synthesis of stable optical sensitizers and improved ionic conductivity electrolytes. In the present investigation, a new composite nano structured photoanodes were prepared using TiO2 nano tubes (TNTs) with TiO2 nano particles (TNPs). TNPs were synthesized by sol–gel method and TNTs were prepared through an alkali hydrothermal transformation. Working photoanodes were prepared using five pastes of TNTs concentrations of 0, 10, 50, 90, and 100 % with TNPs. The DSSCs were fabricated using Indigo carmine dye as photo sensitizer and PMII (1-propyl-3-methylimmidazolium iodide) ionic liquid as electrolyte. The counter electrode was prepared using Copper sulfide. The structure and morphology of TNPs and TNTs were characterized by X-ray diffraction and electron microscopes (TEM and SEM). The photocurrent efficiency is measured using a solar simulator (100 mW/cm2). The prepared composite TNTs/TNPs photoanode could significantly improve the efficiency of dye-sensitized solar cells owing to its synergic effects, i.e. effective dye adsorption mainly originated from TiO2 nanoparticles and rapid electron transport in one-dimensional TiO2 nanotubes. The results of the present investigation suggested that the DSSC based on 10 % TNTs/TNPs showed better photovoltaic performance than cell made pure TiO2 nanoparticles. The highest energy-conversion efficiency of 2.80 % is achieved by composite TNTs (10 %)/TNPs film, which is 68 % higher than that pure TNPs film and far larger than that formed by bare TNTs film (94 %). The charge transport and charge recombination behaviors of DSSCs were investigated by electrochemical impedance spectra and the results showed that composite TNTs/TNPs film-based cell possessed the lowest transfer resistances and the longest electron lifetime. Hence, it could be concluded that the composite TNTs/TNPs photoanodes facilitate the charge transport and enhancing the efficiencies of DSSCs.  相似文献   

4.
光催化还原CO2生成烃类燃料是一种可同时解决全球变暖和能源危机问题的最有效途径之一。尽管这方面的研究已经取得了一定的进展,但是整体的光催化转换效率还非常低。因此,需要发展更加高效的催化剂。由于半导体材料禁带宽度与太阳光谱相匹配,人们已经对其进行了广泛研究。其中TiO2因具有无毒、强氧化性以及良好的光学和电学性质等而成为最主要的研究对象。但是对于光催化还原CO2反应来说, TiO2仍存在很多不足,如只能吸收太阳光谱中的紫外光,光生载流子会快速结合,以及光生空穴的强氧化能力等,这些都限制了其光催化还原CO2的效率。采用窄禁带宽度半导体修饰TiO2是解决上述不足的有效途径之一。本文采用简单的电化学方法成功制备了一种由窄禁带半导体Cu2O修饰的TiO2纳米管(TNTs)的复合物,并运用扫描电子显微镜(SEM)、X射线衍射(XRD)以及X射线光电子能谱(XPS)表征了所制备复合物的形貌、化学组成和结晶度。表征结果显示,所制备的TiO2为整齐排列的纳米管阵列结构;复合物中的纳米颗粒为Cu2O;当电化学沉积Cu2O的时间为5 min时,得到的Cu2O纳米颗粒初步呈类八面体结构。随着沉积时间的增加, Cu2O颗粒尺寸增加,具有八面体结构。 XRD和XPS结果表明, TiO2纳米管为锐钛矿,八面体Cu2O纳米颗粒的主要暴露晶面为(111)面。我们还进一步研究了不同量Cu2O纳米颗粒修饰的TiO2纳米管复合物在可见光以及模拟太阳光下光催化还原CO2的能力。在可见光下,由于自身的禁带宽度,纯净的TiO2纳米管没有任何光催化还原CO2的能力;经过Cu2O纳米颗粒的修饰,复合物显现出明显的光催化还原CO2的能力,其中经过30 min Cu2O沉积的TNTs具有最高的光催化效率。在模拟太阳光下,经过15 min Cu2O沉积的TNTs具有最高的光催化效率。在所有光催化还原CO2过程中,主要碳氢产物为甲烷。为了深入地理解该复合体系在还原CO2中的高催化效率,我们对催化剂进行了进一步的表征。紫外-可见漫反射光谱表明, Cu2O八面体纳米颗粒的沉积将TNTs的吸收光谱拓展到了可见光区域,提高了复合物对太阳光的吸收能力。此外,我们还通过测试所制样品的光电流反应、荧光发射光谱以及电化学阻抗谱,研究了催化剂中光生电子和空穴的分离和迁移能力。结果表明,适量的Cu2O沉积提高了复合物对光的吸收能力,增加了光生载流子的数量,从而使更多的光生载流子参与光催化反应。综上,本文首次报道了八面体Cu2O纳米颗粒修饰TNTs复合物的光催化还原CO2的能力。在一定量的Cu2O纳米颗粒修饰下,该复合物在光催化还原CO2生成烃类反应中表现出高效性。经过一系列详细的表征和讨论,我们认为其高效性主要源于三个方面:(1) TNTs的管状结构为反应物的吸附提供了大量的活性位点,同时一维的管状结构更有利于光生载流子的运载,从而提高了电子和空穴的分离;(2) Cu2O纳米颗粒的修饰提高了催化剂对光的吸收,促进催化剂最大程度地利用太阳光;(3) TiO2和Cu2O之间导带以及价带位置的匹配,在减少光生载流子复合的同时也降低了TiO2价带上空穴的氧化能力,从而抑制了CO2还原产物的再氧化过程。  相似文献   

5.
张佳美  闫瑞  刘小强 《化学研究》2014,(1):41-44,48
采用水热法制备TiO2纳米管(TNTs),然后以12-磷钨杂多酸(PTA)作为交联剂,运用光催化方法在TiO2纳米管表面负载金纳米颗粒(GNPs),从而得到新型复合纳米材料——TNTs-PTA-GNPs;借助傅立叶变换红外光谱仪,X射线衍射仪和透射电子显微镜分析了新型复合纳米材料的结构及形貌,并利用循环伏安法测试了其电化学性能.结果表明,GNPs均匀分布在TNTs表面,从而大幅度改善纳米材料的导电性;但复合纳米材料中无游离的金纳米颗粒.与此同时,TNTs-PTA-GNPs纳米材料具有良好的生物相容性,且可促进酶与电极之间的直接电子转移.  相似文献   

6.
A Pt-loaded carbon black electrode was prepared by pulsed electrophoresis deposition in a Pt colloid solution as a plating bath to overcome the growth problem of a Pt catalyst during deposition in an electrochemical process. This method is a promising technique for preparing Pt catalyst layers at the polymer electrolyte/electrode interface. The particle size of the Pt catalyst loaded by electrophoresis deposition was the same as that of Pt nanoparticles (3–4 nm) in a colloid and the particle size was maintained even during deposition. The loading of the Pt catalyst was controlled by the pH of the Pt colloid and deposition time. The Pt nanoparticles were deposited on a carbon black electrode to a depth of 2.5 μm.  相似文献   

7.
In this work, titanate nanotubes (TNTs), polyaniline (PANI) and gold nanoparticles (GNPs) were assembled to form a ternary composite, which was then applied on an electrode as a scaffold of an electrochemical enzyme biosensor. The scaffold was constructed by oxidatively polymerising aniline to produce an emeraldine salt of PANI on TNTs, followed by gold nanoparticle deposition. A novel aspect of this scaffold lies in the use of the emeraldine salt of PANI as a molecular wire between TNTs and GNPs. Using horseradish peroxidase (HRP) as a model enzyme, voltammetric results demonstrated that direct electron transfer of HRP was achieved at both TNT-PANI and TNT-PANI-GNP-modified electrodes. More significantly, the catalytic reduction current of H2O2 by HRP was ∼75% enhanced at the TNT-PANI-GNP-modified electrode, compared to that at the TNT-PANI-modified electrode. The heterogeneous electron transfer rate constant of HRP was found to be ∼3 times larger at the TNT-PANI-GNP-modified electrode than that at the TNT-PANI-modified electrode. Based on chronoamperometric detection of H2O2, a linear range from 1 to 1200 μM, a sensitivity of 22.7 μA mM−1 and a detection limit of 0.13 μM were obtained at the TNT-PANI-GNP-modified electrode. The performance of the biosensor can be ascribed to the superior synergistic properties of the ternary composite.  相似文献   

8.
Controllable CdS nanoparticles (NPs) decorated on TiO2 nanotube arrays (NTAs) were prepared via electrodeposition in DMSO solution at room temperature, aiming to improve the photoelectrochemical properties of TiO2 NTA electrode in visible-light region. By tuning the concentrations of sulfur and Cd2 + as well as the deposition time, CdS NPs with different sizes can be controllably synthesized at room temperature. Excellent photocurrent response and incident photo to current conversion efficiency were achieved with smaller CdS NPs with optimal reactant concentrations and deposition time, which can be attributed to highly efficient charge separation and high dispersion of CdS NPs on both inner and outer surfaces of TiO2 nanotubes.  相似文献   

9.
We present exemplary fabrications of controlled Nickel phosphate (NiPi)/TiO2 nanotubes arrays (TNTs) in phosphate buffer for boosted photoelectrochemical (PEC) water splitting. The TNTs/NiPi composite electrodes revealed a considerably enhanced photocurrent density of 0.76 mA/cm2, up to 3-time enhancements than bare TNTs, mostly because of the enhanced charge separation, decreased carrier recombination, and improving kinetics of the water oxidation. Also, we demonstrated that the NiPi can assist the PEC features of TNTs over a varied region of pH values from 1 to 14. Incorporation of NiPi over the TNTs surface advances the light absorption features of the electrode, resulting in an enhanced photogenerated charge carrier; and promotes the reactive sites for water oxidation, which was proved by the double-layer capacitance. The TNTs/NiPi photoelectrode exhibited excellent photostabilization under continuous illumination for 5 h, and the photoconversion efficiencies were 0.45%, 3-fold enhancements than with bare TNTs under the illuminations. Overall, this work might offer an innovative approach to fabricating and designing efficient electrodes with superior contact interfaces among photoanodes and numerous co-catalysts.  相似文献   

10.
The performance of dye-sensitized ZnO solar cells was improved by a facile surface-treatment approach through chemical-bath deposition. After the surface treatment, the quantum dots of Zn(2) SnO(4) were deposited onto ZnO nanoparticles accompanied by the aggregations of Zn(2) SnO(4) nanoparticles. The ZnO film displayed a better resistance to acidic dye solution on account of the deposited Zn(2) SnO(4) nanoparticles. Meanwhile, the open-circuit photovoltage was greatly enhanced, which can be ascribed to the increased conduction-band edge of ZnO and inhibited interfacial charge recombination. Although the deposition of Zn(2) SnO(4) decreased the adsorption amounts of N719 dye, the aggregates of Zn(2) SnO(4) with a size of 350-450?nm acted as the effective light-scattering layer, thereby resulting in an improved short-circuit photocurrent. By co-sensitizing 10?μm-thick ZnO film with N719 and D131 dyes, a top efficiency of 4.38?% was achieved under the illumination of one sun (AM?1.5, 100?mW?cm(-2) ).  相似文献   

11.
A nano-Au modified TiO2 electrode was prepared via the oxidation of Ti sheet in flame and subsequent modification with gold nanoparticles. The results of SEM and TEM measurements show that the Au nanoparticles are well dispersed on TiO2 surface. A near 2-fold enhancement in photocurrent was achieved upon the modification with Au nanoparticles. From the results of photocurrent and electrochemical impedance experiments it was found that the flatband potential of nano-Au/TiO2 electrode negatively shifted about 100 mV in 0.5 mol/L Na2SO4 solutions compared with that of bare TiO2 electrode. The improvement of photoelectrochemical performance was explained by the inhibition for charge recombination of photo-induced electrons and holes, and the promotion for interracial charge-transfer kinetics at nano-Au/TiO2 composite film. Such nanometal-semiconductor composite films have the potential application in improving the performance of photoelectrochemical solar cells.  相似文献   

12.
采用电化学阳极氧化法制备TiO2纳米管,然后用光化学沉积法在TiO2纳米管表面沉积ZnO纳米颗粒制备ZnO/TiO2纳米复合材料。对样品进行了Raman谱、XRD和SEM表征,通过测定光电流-时间(I-t)和开路电压-时间(OCPT)曲线对ZnO/TiO2纳米复合材料的光电化学性能进行研究。结果表明,沉积ZnO没有改变TiO2的相结构;复合ZnO提高了TiO2的光电性能;在Zn(NO3)2浓度为10-3 mol.L-1的条件下制得的ZnO/TiO2纳米复合材料具有较好的光电性能。  相似文献   

13.
A constant current electrochemical deposition was employed to incorporate CdS nanoparticles into the TiO2 nanotube arrays (TiO2NTs). The size and amount of CdS nanoparticles in TiO2NTs (CdS@TiO2NTs) were controllable via modulating current, deposition time and electrolyte concentration. It was revealed, from the scanning electron microscopy (SEM) images and X-ray photoelectron spectroscopy (XPS) in depth profile, that CdS nanoparticles were filled into TiO2 nanotubes. A shift of the absorption edge toward the visible region under the optimal electrodeposition condition was observed with the diffuse reflectance spectroscopy (DRS). A 5-fold enhancement in the photocurrent spectrum for TiO2NTs was observed and the photocurrent response range was significantly extended into the visible region because of the CdS incorporation. Compared with pure TiO2NTs, under a visible light irradiation, CdS@TiO2NTs exhibited a 3.5-fold improvement of photocatalytic activity, which was demonstrated by the photocatalytic decomposition of Rhodamine B (RhB).  相似文献   

14.
《Supramolecular Science》1998,5(5-6):669-674
The cosensitization of a nanostructured titanium dioxide (TiO2) electrode with tetrasulphonated porphyrins (MTsPP M=Zn H2) is reported. Cosensitization greatly enhances the photocurrent response at the Q-band of H2TsPP and markedly decreases the photocurrent response in the Soret band of ZnTsPP. The photoelectric behavior of the cosensitized TiO2 electrode is attributed to the formation of heteroaggregates between H2TsPP and ZnTsPP molecules on the positively charged TiO2 electrode by charge-transfer interaction resulting in the decrease of the surface concentration of the H2TsPP dimer and the presence of the low-lying charge-transfer state.  相似文献   

15.
Surface photovoltage spectra (SPS) measurements of TiO2 show that a large surface state density is present on the TiO2 nanoparticles and these surface states can be efficiently decreased by sensitization using CdS nanoparticles as well as by suitable heat treatment. The photoelectrochemical behavior of the bare TiO2 thin film indicates that the mechanism of photoelectron transport is controlled by the trapping/detrapping properties of surface states within the thin films. The slow photocurrent response upon the illumination can be explained by the trap saturation effect. For a TiO2 nanoparticulate thin film sensitized using CdS nanoparticles, the slow photocurrent response disappears and the steady-state photocurrent increases drastically, which suggests that photosensitization can decrease the effect of surface states on photocurrent response. Electronic Publication  相似文献   

16.
Homogeneously dispersed silver nanoparticles (AgNPs) were successfully decorated onto the surface of TiO2 nanotube arrays (TNTA) by means of an in situ photoreduction method. TNTA films as supports exhibit excellent properties to prevent agglomeration of AgNPs, and they also avoid using polymer ligands, which is deleterious to enhancing the properties of the fabricated NPs. The silver particle size and its content could be controlled just by changing the immersion time. Detailed SEM and TEM analyses combined with energy‐dispersive X‐ray spectroscopy analyses with different immersion times (5, 10, 30, 60 min) have revealed the variation tendency. The prepared Ag/TNTA composite films were also characterized by XRD, X‐ray photoelectron spectroscopy, and high‐resolution TEM. The UV/Vis diffuse reflectance spectra displayed a redshift of the absorption peak with the growth of AgNPs. The photocurrent response and the photoelectrocatalytic degradation of methyl orange (MO) were used to evaluate the photoelectrochemical properties of the fabricated samples. The results showed that the photocurrent response and photoelectrocatalytic activity largely depended on the loaded Ag particle size and content. TNTA films with a diameter of 17.92 nm and silver content of 1.15 at % showed the highest photocurrent response and degradation rate of MO. The enhanced properties could be attributed to the synergistic effect between AgNPs and TiO2. To make good use of this effect, particle size and silver content should be well controlled to develop the electron charge and discharge process during the photoelectrical process. Neither smaller nor larger AgNPs caused decreased photoelectrical properties.  相似文献   

17.
In this paper, we prepared TiO2@CdS core–shell nanorods films electrodes using a simple and low-cost chemical bath deposition method. The core–shell nanorods films electrodes were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and UV–vis spectrometry techniques. After applying these TiO2@CdS core–shell nanorods electrodes in photovoltaic cells, we found that the photocurrent was dramatically enhanced, comparing with those of bare TiO2 nanorods and CdS films electrodes. Moreover, TiO2@CdS core–shell nanorods film electrode showed better cell performance than CdS nanoparticles deposited TiO2 nanoparticles (P25) film electrode. A photocurrent of 1.31 mA/cm2, a fill factor of 0.43, an open circuit photovoltage of 0.44 V, and a conversion efficiency of 0.8% were obtained under an illumination of 32 mW/cm2, when the CdS nanoparticles deposited on TiO2 nanorods film for about 20 min. The maximum quantum efficiency of 5.0% was obtained at an incident wavelength of 500 nm. We believe that TiO2@CdS core–shell heterostructured nanorods are excellent candidates for studying some fundamental aspects on charge separation and transfer in the fields of photovoltaic cells and photocatalysis.  相似文献   

18.
Two novel deposition methods were used to synthesize Pt-TiO(2) composite photoelectrodes: a tilt-target room temperature sputtering method and aerosol-chemical vapor deposition (ACVD). Pt nanoparticles (NPs) were sequentially deposited by the tilt-target room temperature sputtering method onto the as-synthesized nanostructured columnar TiO(2) films by ACVD. By varying the sputtering time of Pt deposition, the size of deposited Pt NPs on the TiO(2) film could be precisely controlled. The as-synthesized composite photoelectrodes with different sizes of Pt NPs were characterized by various methods, such as SEM, EDS, TEM, XRD, and UV-vis. The photocurrent measurements revealed that the modification of the TiO(2) surface with Pt NPs improved the photoelectrochemical properties of electrodes. Performance of the Pt-TiO(2) composite photoelectrodes with sparsely deposited 1.15 nm Pt NPs was compared to the pristine TiO(2) photoelectrode with higher saturated photocurrents (7.92 mA/cm(2) to 9.49 mA/cm(2)), enhanced photoconversion efficiency (16.2% to 21.2%), and increased fill factor (0.66 to 0.70). For larger size Pt NPs of 3.45 nm, the composite photoelectrode produced a lower photocurrent and reduced conversion efficiency compared to the pristine TiO(2) electrode. However, the surface modification by Pt NPs helped the composite electrode maintain higher fill factor values.  相似文献   

19.
Photoelectrochemical measurements were used to study the photoelectrode characteristics of composite nanoparticles composed of fullerene C60 and partially hydrolyzed aluminum phthalocyanine chloride (AlPc). In cyclic voltammetry measurements, the electrodes coated with the composite nanoparticles were found to have photoanodic [electron donor: 2-mercaptoethanol (ME)] and photocathodic (electron acceptor: O2) characteristics similar to those of the vapor-deposited p/n junction electrode. Their photoanodic features were further investigated with respect to the transient photocurrent response to light irradiation and the dependence on ME concentration (under potentiostatic conditions), from which it was noted that there was a decrease in the initial spiky photocathodic current and saturation of the steady-state photoanodic current at a higher ME concentration. Thus, the reaction kinetics was probably dominated by charge transport process. Moreover, external and internal quantum efficiency spectrum measurements indicated that the composite nanoparticles responded to the full spectrum of visible light ( < 880 nm) for both the photoanodic and photocathodic current. The present research will assist comprehension of photocatalytic behavior of the composite nanoparticles.  相似文献   

20.
Three alkylcarbonates of γ-cyclodextrin, i.e. hexyl, octyl and dodecylcarbonate, were synthesized and characterized, with the goal of formulating solid nanoparticles. The series of alkylcarbonates showed amphiphilic properties and were capable of forming micelles and nanoparticles. Blank and drug-loaded alkylcarbonate nanoparticles were prepared with each alkylcarbonate, using the solvent injection technique. Progesterone was chosen as model drug. The sizes of both unloaded and loaded nanoparticles were in the 80–200 nm range, with narrow size distribution and spherical shape, as shown by TEM analysis. The zeta potentials of unloaded nanoparticles were in the −20 to −24.0 mV range, and were slightly decreased in loaded nanoparticles. Drug-loading capacity was good; DSC analysis did not detect the progesterone melting peak, indicating the drug had interacted with the cyclodextrin alkylcarbonates. In vitro release kinetics of progesterone from the three types of nanoparticles were slow. These results indicate that γ-CD alkylcarbonate nanoparticles might be used as prolonged drug delivery system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号