首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gas phase and solvent dependent preference of the tautomerization between 2-pyridinethiol (2SH) and 2-pyridinethione (2S) has been assessed using variable temperature Fourier transform infrared (FTIR) experiments, as well as ab initio and density functional theory computations. No spectroscopic evidence (nu(S)(-)(H) stretch) for 2SH was observed in toluene, C(6)D(6), heptane, or methylene chloride solutions. Although, C(s)() 2SH is 2.61 kcal/mol more stable than C(s)() 2S (CCSD(T)/cc-pVTZ//B3LYP/6-311+G(3df,2p)+ZPE), cyclohexane solvent-field relative energies (IPCM-MP2/6-311+G(3df,2p)) favor 2S by 1.96 kcal/mol. This is in accord with the FTIR observations and in quantitative agreement with the -2.6 kcal/mol solution (toluene or C(6)D(6)) calorimetric enthalpy for the 2S/2SH tautomerization favoring the thione. As the intramolecular transition state for the 2S, 2SH tautomerization (2TS) lies 25 (CBS-Q) to 30 kcal/mol (CCSD/cc-pVTZ) higher in energy than either tautomer, tautomerization probably occurs in the hydrogen bonded dimer. The B3LYP/6-311+G(3df,2p) optimized C(2) 2SH dimer is 10.23 kcal/mol + ZPE higher in energy than the C(2)(h)() 2S dimer and is only 2.95 kcal/mol + ZPE lower in energy than the C(2) 2TS dimer transition state. Dimerization equilibrium measurements (FTIR, C(6)D(6)) over the temperature range 22-63 degrees C agree: K(eq)(298) = 165 +/- 40 M(-)(1), DeltaH = -7.0 +/- 0.7 kcal/mol, and DeltaS = -13.4 +/- 3.0 cal/(mol deg). The difference between experimental and B3LYP/6-311+G(3df,2p) [-34.62 cal/(mol deg)] entropy changes is due to solvent effects. The B3LYP/6-311+G(3df,2p) nucleus independent chemical shifts (NICS) are -8.8 and -3.5 ppm 1 A above the 2SH and 2S ring centers, respectively, and the thiol is aromatic. Although the thione is not aromatic, it is stabilized by the thioamide resonance. In solvent, the large 2S dipole, 2-3 times greater than 2SH, favors the thione tautomer and, in conclusion, 2S is thermodynamically more stable than 2SH in solution.  相似文献   

2.
The reaction of Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(5)-C), 7, with Pt(PBu(t)(3))(2) yielded two products Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))], 8, and Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](2), 9. Compound 8 contains a Ru(5)Pt metal core in an open octahedral structure. In solution, 8 exists as a mixture of two isomers that interconvert rapidly on the NMR time scale at 20 degrees C, DeltaH() = 7.1(1) kcal mol(-1), DeltaS() = -5.1(6) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 8.6(3) kcal mol(-1). Compound 9 is structurally similar to 8, but has an additional Pt(PBu(t)(3)) group bridging an Ru-Ru edge of the cluster. The two Pt(PBu(t)(3)) groups in 9 rapidly exchange on the NMR time scale at 70 degrees C, DeltaH(#) = 9.2(3) kcal mol(-)(1), DeltaS(#) = -5(1) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 10.7(7) kcal mol(-1). Compound 8 reacts with hydrogen to give the dihydrido complex Ru(5)(CO)(11)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](mu-H)(2), 10, in 59% yield. This compound consists of a closed Ru(5)Pt octahedron with two hydride ligands bridging two of the four Pt-Ru bonds.  相似文献   

3.
The complexes PtRu(5)(CO)(15)(PMe(2)Ph)(mu(6)-C) (2), PtRu(5)(CO)(14)(PMe(2)Ph)(2)(mu(6)-C) (3), PtRu(5)(CO)(15)(PMe(3))(mu(6)-C) (4), PtRu(5)(CO)(14)(PMe(3))(2)(mu(6)-C) (5), and PtRu(5)(CO)(15)(Me(2)S)(mu(6)-C) (6) were obtained from the reactions of PtRu(5)(CO)(16)(mu(6)-C) (1) with the appropriate ligand. As determined by NMR spectroscopy, all the new complexes exist in solution as a mixture of isomers. Compounds 2, 3, and 6 were characterized crystallographically. In all three compounds, the six metal atoms are arranged in an octahedral geometry, with a carbido carbon atom in the center. The PMe(2)Ph and Me(2)S ligands are coordinated to the Pt atom in 2 and 6, respectively. In 3, the two PMe(2)Ph ligands are coordinated to Ru atoms. In solution, all the new compounds undergo dynamical intramolecular isomerization by shifting the PMe(2)Ph or Me(2)S ligand back and forth between the Pt and Ru atoms. For compound 2, DeltaH++ = 15.1(3) kcal/mol, DeltaS++ = -7.7(9) cal/(mol.K), and DeltaG(298) = 17.4(6) kcal/mol for the transformation of the major isomer to the minor isomer; for compound 4, DeltaH++ = 14.0(1) kcal/mol, DeltaS++ = -10.7(4) cal/(mol.K), and DeltaG(298) = 17.2(2) kcal/mol for the transformation of the major isomer to the minor isomer; for compound 6, DeltaH++ = 18(1) kcal/mol, DeltaS++ = 21(5) cal/(mol.K) and DeltaG(298) = 12(2) kcal/mol. The shifts of the Me(2)S ligand in 6 are significantly more facile than the shifts for the phosphine ligand in compounds 2-5. This is attributed to a more stable ligand-bridged intermediate for the isomerizations of 6 than that for compounds 2-5. The intermediate for the isomerization of 6 involves a bridging Me(2)S ligand that can use two lone pairs of electrons for coordination to the metal atoms, whereas a tertiary phosphine ligand can use only one lone pair of electrons for bridging coordination.  相似文献   

4.
The kinetics of the equilibrium reaction between [Ni(SC(6)H(4)R-4)(2)(dppe)] (R= MeO, Me, H, Cl, or NO(2); dppe = Ph(2)PCH(2)CH(2)PPh(2)) and mixtures of [lutH](+) and lut (lut = 2,6-dimethylpyridine) in MeCN to form [Ni(SHC(6)H(4)R-4)(SC(6)H(4)R-4)(dppe)](+) have been studied using stopped-flow spectrophotometry. The kinetics for the reactions with R = MeO, Me, H, or Cl are consistent with a single-step equilibrium reaction. Investigation of the temperature dependence of the reactions shows that DeltaG = 13.6 +/- 0.3 kcal mol(-)(1) for all the derivatives but the values of DeltaH and DeltaS vary with R (R = MeO, DeltaH() = 8.5 kcal mol(-)(1), DeltaS = -16 cal K(-)(1) mol(-)(1); R = Me, DeltaH() = 10.8 kcal mol(-)(1), DeltaS = -9.5 cal K(-)(1) mol(-)(1); R = Cl, DeltaH = 23.7 kcal mol(-)(1), DeltaS = +33 cal K(-)(1) mol(-)(1)). With [Ni(SC(6)H(4)NO(2)-4)(2)(dppe)] a more complicated rate law is observed consistent with a mechanism in which initial hydrogen-bonding of [lutH](+) to the complex precedes intramolecular proton transfer. It seems likely that all the derivatives operate by this mechanism, but only with R = NO(2) (the most electron-withdrawing substituent) does the intramolecular proton transfer step become sufficiently slow to result in the change in kinetics. Studies with [lutD](+) show that the rates of proton transfer to [Ni(SC(6)H(4)R-4)(2)(dppe)] (R = Me or Cl) are associated with negligible kinetic isotope effect. The possible reasons for this are discussed. The rates of proton transfer to [Ni(SC(6)H(4)R-4)(2)(dppe)] vary with the 4-R-substituent, and the Hammett plot is markedly nonlinear. This unusual behavior is attributable to the electronic influence of R which affects the electron density at the sulfur.  相似文献   

5.
Quantum mechanical calculations using restricted and unrestricted B3LYP density functional theory, CASPT2, and CBS-QB3 methods for the dimerization of 1,3-cyclohexadiene (1) reveal several highly competitive concerted and stepwise reaction pathways leading to [4 + 2] and [2 + 2] cycloadducts, as well as a novel [6 + 4] ene product. The transition state for endo-[4 + 2] cycloaddition (endo-2TS, DeltaH(double dagger)(B3LYP(0K)) = 28.7 kcal/mol and DeltaH(double dagger)(CBS-QB3(0K)) = 19.0 kcal/mol) is not bis-pericyclic, leading to nondegenerate primary and secondary orbital interactions. However, the C(s) symmetric second-order saddle point on the B3LYP energy surface is only 0.3 kcal/mol above endo-2TS. The activation enthalpy for the concerted exo-[4 + 2] cycloaddition (exo-2TS, DeltaH(double dagger)(B3LYP(0K)) = 30.1 kcal/mol and DeltaH(double dagger)(CBS-QB3(0K)) = 21.1 kcal/mol) is 1.4 kcal/mol higher than that of the endo transition state. Stepwise pathways involving diallyl radicals are formed via two different C-C forming transition states (rac-5TS and meso-5TS) and are predicted to be competitive with the concerted cycloaddition. Transition states were located for cyclization from intermediate rac-5 leading to the endo-[4 + 2] (endo-2) and exo-[2 + 2] (anti-3) cycloadducts. Only the endo-[2 + 2] (syn-3) transition state was located for cyclization of intermediate meso-5. The novel [6 + 4] "concerted" ene transition state (threo-4TS, DeltaH(double dagger)(UB3LYP(0K)) = 28.3 kcal/mol) is found to be unstable with respect to an unrestricted calculation. This diradicaloid transition state closely resembles the cyclohexadiallyl radical rather than the linked cyclohexadienyl radical. Several [3,3] sigmatropic rearrangement transition states were also located and have activation enthalpies between 27 and 31 kcal/mol.  相似文献   

6.
Experimental results of an unprecedented haloform-type reaction in which 4-alkyl-4-hydroxy-3,3-difluoromethyl trifluoromethyl ketones undergo base-promoted selective cleavage of the CO-CF(3) bond, yielding 3-hydroxy-2,2-difluoroacids and fluoroform, are rationalized using DFT (B3LYP) calculations. The gas-phase addition of hydroxide ion to 1,1,1,3,3-pentafluoro-4-hydroxypentan-2-one (R) is found to be a barrierless process, yielding a tetrahedral intermediate (INT), involving a DeltaG(r)(298 K) of -61.4 kcal/mol. The CO-CF(3) bond cleavage in INT leads to a hydrogen-bonded [CH(3)CHOHCF(2)CO(2)H...CF(3)](-) complex by passage through a transition structure (TS1) with a DeltaG()(298 K) of 20.8 kcal/mol and a DeltaG(r)(298 K) of 9.8 kcal/mol. This complex undergoes a proton transfer between its components, yielding a hydrogen-bonded [CH(3)CHOHCF(2)CO(2)...CHF(3)](-) complex. This process has associated with it a DeltaG()(298 K) of only 3.1 kcal/mol and a DeltaG(r)(298 K) of -43.3 kcal/mol. The CO-CF(2) bond cleavage in INT leads to a hydrogen-bonded [CH(3)CHOHCF(2)...CF(3)CO(2)H](-) complex by passage through a transition structure (TS3) with a DeltaG()(298 K) of 29.2 kcal/mol and a DeltaG(r)(298 K) of 25.1 kcal/mol. The lower energy barrier found for CO-CF(3) bond cleavage in INT is ascribed to the larger number of fluorine atoms stabilizing the negative charge accumulated on the CF(3) moiety of TS1, as compared to the number of fluorine atoms stabilizing the negative charge on the CH(3)CHOHCF(2) moiety of TS3. The solvent-induced effects on the two pathways, introduced within the SCRF formalism through PCM calculations, do not reverse the predicted preference of the CO-CF(3) over the CO-CF(2) bond cleavage of R in the gas phase.  相似文献   

7.
Density functional theory computations and pulsed-ionization high-pressure mass spectrometry experiments have been used to explore the potential energy surfaces for gas-phase S(N)2 reactions between halide ions and trifluoromethyl halides, X(-) + CF(3)Y --> Y(-) + CF(3)X. Structures of neutrals, ion-molecule complexes, and transition states show the possibility of two mechanisms: back- and front-side attack. From pulsed-ionization high-pressure mass spectrometry, enthalpy and entropy changes for the equilibrium clustering reactions for the formation of Cl(-)(BrCF(3)) (-16.5 +/- 0.2 kcal mol(-1) and -24.5 +/- 1 cal mol(-1) K(-1)), Cl(-)(ICF(3)) (-23.6 +/- 0.2 kcal mol(-1)), and Br(-)(BrCF(3)) (-13.9 +/- 0.2 kcal mol(-1) and -22.2 +/- 1 cal mol(-1) K(-1)) have been determined. These are in good to excellent agreement with computations at the B3LYP/6-311+G(3df)//B3LYP/6-311+G(d) level of theory. It is shown that complex formation takes place by a front-side attack complex, while the lowest energy S(N)2 reaction proceeds through a back-side attack transition state. This latter mechanism involves a potential energy profile which closely resembles a condensed phase S(N)2 reaction energy profile. It is also shown that the Cl(-) + CF(3)Br --> Br(-) + CF(3)Cl S(N)2 reaction can be interpreted using Marcus theory, in which case the reaction is described as being initiated by electron transfer. A potential energy surface at the B3LYP/6-311+G(d) level of theory confirms that the F(-) + CF(3)Br --> Br(-) + CF(4) S(N)2 reaction proceeds through a Walden inversion transition state.  相似文献   

8.
The HOOO(-) anion (1) can adopt a triplet state (T-1) or a singlet state (S-1), where the former is 9.8 kcal/mol (DeltaH(298) = 10.3 kcal/mol) more stable than the latter. S-1 possesses a strong O-OOH bond with some double bond character and a weakly covalent OO-OH bond (1.80 A) according to CCSD(T)/6-311++G(3df,3pd) calculations (the longest O-O bond ever found for a peroxide). In aqueous solution, S-1 adopts a geometry closely related to that of HOOOH (OO(O), 1.388 A; (O)OO(H), 1.509 A; tau(OOOH), 78.3 degrees ), justifying that S-1 is considered the anion of HOOOH. Dissociation into HO anion and O(2)((1)Delta(g)) requires 15.4 (DeltaH(298) = 14.3; DeltaG(298) = 8.9) kcal/mol. Structure T-1 corresponds to a van der Waals complex between HO anion and O(2)((3)Sigma(g)(-)) having a binding energy of 2.7 (DeltaH(298) = 2.1) kcal/mol. Modes of generating S-1 in aqueous solution are discussed, and it is shown that S-1 represents an important intermediate in ozonation reactions.  相似文献   

9.
The ozonolysis of acetylene was investigated using CCSD(T), CASPT2, and B3LYP-DFT in connection with a 6-311+G(2d,2p) basis set. The reaction is initiated by the formation of a van der Waals complex followed by a [4pi + 2pi] cycloaddition between ozone and acetylene (activation enthalpy DeltaH(a)(298) = 9.6 kcal/mol; experiment, 10.2 kcal/mol), yielding 1,2,3-trioxolene, which rapidly opens to alpha-ketocarbonyl oxide 5. Alternatively, an O atom can be transferred from ozone to acetylene (DeltaH(a)(298) = 15.6 kcal/mol), thus leading to formyl carbene, which can rearrange to oxirene or ketene. The key compound in the ozonolysis of acetylene is 5 because it is the starting point for the isomerization to the corresponding dioxirane 19 (DeltaH(a)(298) = 16.9 kcal/mol), for the cyclization to trioxabicyclo[2.1.0]pentane 10 (DeltaH(a)(298) = 19.5 kcal/mol), for the formation of hydroperoxy ketene 15 (DeltaH(a)(298) = 20.6 kcal/mol), and for the rearrangement to dioxetanone 9 (DeltaH(a)(298) = 23.6 kcal/mol). Compounds 19, 10, 15, and 9 rearrange or decompose with barriers between 13 and 16 kcal/mol to yield as major products formanhydride, glyoxal, formaldehyde, formic acid, and (to a minor extent) glyoxylic acid. Hence, the ozonolysis of acetylene possesses a very complicated reaction mechanism that deserves intensive experimental studies.  相似文献   

10.
Nitrile hydratase (NHase) is an iron-containing metalloenzyme that converts nitriles to amides. The mechanism by which this biochemical reaction occurs is unknown. One mechanism that has been proposed involves nucleophilic attack of an Fe-bound nitrile by water (or hydroxide). Reported herein is a five-coordinate model compound ([Fe(III)(S(2)(Me2)N(3)(Et,Pr))](+)) containing Fe(III) in an environment resembling that of NHase, which reversibly binds a variety of nitriles, alcohols, amines, and thiocyanate. XAS shows that five-coordinate [Fe(III)(S(2)(Me2)N(3)(Et,Pr))](+) reacts with both methanol and acetonitrile to afford a six-coordinate solvent-bound complex. Competitive binding studies demonstrate that MeCN preferentially binds over ROH, suggesting that nitriles would be capable of displacing the H(2)O coordinated to the iron site of NHase. Thermodynamic parameters were determined for acetonitrile (DeltaH = -6.2(+/-0.2) kcal/mol, DeltaS = -29.4(+/-0.8) eu), benzonitrile (-4.2(+/-0.6) kcal/mol, DeltaS = -18(+/-3) eu), and pyridine (DeltaH = -8(+/-1) kcal/mol, DeltaS = -41(+/-6) eu) binding to [Fe(III)(S(2)(Me2)N(3)(Et,Pr))](+) using variable-temperature electronic absorption spectroscopy. Ligand exchange kinetics were examined for acetonitrile, iso-propylnitrile, benzonitrile, and 4-tert-butylpyridine using (13)C NMR line-broadening analysis, at a variety of temperatures. Activation parameters for ligand exchange were determined to be DeltaH(+ +) = 7.1(+/-0.8) kcal/mol, DeltaS(+ +) = -10(+/-1) eu (acetonitrile), DeltaH(+ +) = 5.4(+/-0.6) kcal/mol, DeltaS(+ +) = -17(+/-2) eu (iso-propionitrile), DeltaH(+ +) = 4.9(+/-0.8) kcal/mol, DeltaS(+ +) = -20(+/-3) eu (benzonitrile), and DeltaH(+ +) = 4.7(+/-1.4) kcal/mol DeltaS(+ +) = -18(+/-2) eu (4-tert-butylpyridine). The thermodynamic parameters for pyridine binding to a related complex, [Fe(III)(S(2)(Me2)N(3)(Pr,Pr))](+) (DeltaH = -5.9(+/-0.8) kcal/mol, DeltaS = -24(+/-3) eu), are also reported, as well as kinetic parameters for 4-tert-butylpyridine exchange (DeltaH(+ +) = 3.1(+/-0.8) kcal/mol, DeltaS(+ +) = -25(+/-3) eu). These data show for the first time that, when it is contained in a ligand environment similar to that of NHase, Fe(III) is capable of forming a stable complex with nitriles. Also, the rates of ligand exchange demonstrate that low-spin Fe(III) in this ligand environment is more labile than expected. Furthermore, comparison of [Fe(III)(S(2)(Me2)N(3)(Et,Pr))](+) and [Fe(III)(S(2)(Me2)N(3)(Pr,Pr))](+) demonstrates how minor distortions induced by ligand constraints can dramatically alter the reactivity of a metal complex.  相似文献   

11.
A series of stable complexes, (PMe(3))(3)Ru(SiR(3))(2)(H)(2) ((SiR(3))(2) = (SiH(2)Ph)(2), 3a; (SiHPh(2))(2), 3b; (SiMe(2)CH(2)CH(2)SiMe(2)), 3c), has been synthesized by the reaction of hydridosilanes with (PMe(3))(3)Ru(SiMe(3))H(3) or (PMe(3))(4)Ru(SiMe(3))H. Compounds 3a and 3c adopt overall pentagonal bipyramidal geometries in solution and the solid state, with phosphine and silyl ligands defining trigonal bipyramids and ruthenium hydrides arranged in the equatorial plane. Compound 3a exhibits meridional phosphines, with both silyl ligands equatorial, whereas the constraints of the chelate in 3c result in both axial and equatorial silyl environments and facial phosphines. Although there is no evidence for agostic Si-H interactions in 3a and 3b, the equatorial silyl group in 3c is in close contact with one hydride (1.81(4) A) and is moderately close to the other hydride (2.15(3) A) in the solid state and solution (nu(Ru.H.Si) = 1740 cm(-)(1) and nu(RuH) = 1940 cm(-)(1)). The analogous bis(silyl) dihydride, (PMe(3))(3)Ru(SiMe(3))(2)(H)(2) (3d), is not stable at room temperature, but can be generated in situ at low temperature from the 16e(-) complex (PMe(3))(3)Ru(SiMe(3))H (1) and HSiMe(3). Complexes 3b and 3d have been characterized by multinuclear, variable temperature NMR and appear to be isostructural with 3a. All four complexes exhibit dynamic NMR spectra, but the slow exchange limit could not be observed for 3c. Treatment of 1 with HSiMe(3) at room temperature leads to formation of (PMe(3))(3)Ru(SiMe(2)CH(2)SiMe(3))H(3) (4b) via a CH functionalization process critical to catalytic dehydrocoupling of HSiMe(3) at higher temperatures. Closer inspection of this reaction between -110 and -10 degrees C by NMR reveals a plethora of silyl hydride phosphine complexes formed by ligand redistribution prior to CH activation. Above ca. 0 degrees C this mixture converts cleanly via silane dehydrogenation to the very stable tris(phosphine) trihydride carbosilyl complex 4b. The structure of 4b was determined crystallographically and exhibits a tetrahedral P(3)Si environment around the metal with the three hydrides adjacent to silicon and capping the P(2)Si faces. Although strong Si.HRu interactions are not indicated in the structure or by IR, the HSi distances (2.00(4) - 2.09(4) A) and average coupling constant (J(SiH) = 25 Hz) suggest some degree of nonclassical SiH bonding in the RuH(3)Si moiety. The least hindered complex, 3a, reacts with carbon monoxide principally via an H(2) elimination pathway to yield mer-(PMe(3))(3)(CO)Ru(SiH(2)Ph)(2), with SiH elimination as a minor process. However, only SiH elimination and formation of (PMe(3))(3)(CO)Ru(SiR(3))H is observed for 3b-d. The most hindered bis(silyl) complex, 3d, is extremely labile and even in the absence of CO undergoes SiH reductive elimination to generate the 16e(-) species 1 (DeltaH(SiH)(-)(elim) = 11.0 +/- 0.6 kcal x mol(-)(1) and DeltaS(SiH)(-)(elim) = 40 +/- 2 cal x mol(-)(1) x K(-)(1); Delta = 9.2 +/- 0.8 kcal x mol(-)(1) and Delta = 9 +/- 3 cal x mol(-)(1).K(-)(1)). The minimum barrier for the H(2) reductive elimination can be estimated, and is higher than that for silane elimination at temperatures above ca. -50 degrees C. The thermodynamic preferences for oxidative additions to 1 are dominated by entropy contributions and steric effects. Addition of H(2) is by far most favorable, whereas the relative aptitudes for intramolecular silyl CH activation and intermolecular SiH addition are strongly dependent on temperature (DeltaH(SiH)(-)(add) = -11.0 +/- 0.6 kcal x mol(-)(1) and DeltaS(SiH)(-)(add) = -40 +/- 2 cal.mol(-)(1) x K(-)(1); DeltaH(beta)(-CH)(-)(add) = -2.7 +/- 0.3 kcal x mol(-)(1) and DeltaS(beta)(-CH)(-)(add) = -6 +/- 1 cal x mol(-)(1) x K(-)(1)). Kinetic preferences for oxidative additions to 1 - intermolecular SiH and intramolecular CH - have been also quantified: Delta = -1.8 +/- 0.8 kcal x mol(-)(1) and Delta = -31 +/- 3 cal x mol(-)(1).K(-)(1); Delta = 16.4 +/- 0.6 kcal x mol(-)(1) and Delta = -13 +/- 6 cal x mol(-)(1).K(-)(1). The relative enthalpies of activation (-)(1) x K(-)(1)). Kinetic preferences for oxidative additions to 1 - intermolecular SiH and intramolecular CH - have been also quantified: Delta (H)SiH(add) = 1.8 +/- 0.8 kcal x mol(-)(1) and Delta S((SiH-add) =31+/- 3 cal x mol(-)(1) x K(-)(1); Delta S (SiH -add) = 16.4 +/- 0.6 kcal x mol(-)(1) and =Delta S (SiH -CH -add) =13+/- 6 cal x mol(-)(1) x K(-)(1). The relative enthalpies of activation are interpreted in terms of strong SiH sigma-complex formation - and much weaker CH coordination - in the transition state for oxidative addition.  相似文献   

12.
The thermodynamic and structural characteristics of Al(C6F(5)3-derived vs B(C6F5)3-derived group 4 metallocenium ion pairs are quantified. Reaction of 1.0 equiv of B(C6F5)3 or 1.0 or 2.0 equiv of Al(C6F5)3 with rac-C2H4(eta5-Ind)2Zr(CH3)2 (rac-(EBI)Zr(CH3)2) yields rac-(EBI)Zr(CH3)(+)H3CB(C6)F5)(3)(-) (1a), rac-(EBI)Zr(CH3)+H3CAl(C6F5)(3)(-) (1b), and rac-(EBI)Zr2+[H3CAl(C6F5)3](-)(2) (1c), respectively. X-ray crystallographic analysis of 1b indicates the H3CAl(C6F5)(3)(-) anion coordinates to the metal center via a bridging methyl in a manner similar to B(C6F5)3-derived metallocenium ion pairs. However, the Zr-(CH3)(bridging) and Al-(CH3)(bridging) bond lengths of 1b (2.505(4) A and 2.026(4) A, respectively) indicate the methyl group is less completely abstracted in 1b than in typical B(C6F5)3-derived ion pairs. Ion pair formation enthalpies (DeltaH(ipf)) determined by isoperibol solution calorimetry in toluene from the neutral precursors are -21.9(6) kcal mol(-1) (1a), -14.0(15) kcal mol(-1) (1b), and -2.1(1) kcal mol(-1) (1b-->1c), indicating Al(C6F5)3 to have significantly less methide affinity than B(C6F5)3. Analogous experiments with Me2Si(eta5-Me4C5)(t-BuN)Ti(CH3)2 indicate a similar trend. Furthermore, kinetic parameters for ion pair epimerization by cocatalyst exchange (ce) and anion exchange (ae), determined by line-broadening in VT NMR spectra over the range 25-75 degrees C, are DeltaH++(ce) = 22(1) kcal mol(-1), DeltaS++(ce) = 8.2(4) eu, DeltaH++(ae) = 14(2) kcal mol(-1), and DeltaS++(ae) = -15(2) eu for 1a. Line broadening for 1b is not detectable until just below the temperature where decomposition becomes significant ( approximately 75-80 degrees C), but estimation of the activation parameters at 72 degrees C gives DeltaH++(ce) approximately 22 kcal mol(-1)and DeltaH++(ae) approximately 16 kcal mol(-1), consistent with the bridging methide being more strongly bound to the zirconocenium center than in 1a.  相似文献   

13.
The first-order rate constants (k(Y)) at several temperatures in CDCl(3) were measured for thermal decompositions of YC(6)H(4)CH(2)CO(3)C(CH(3))(3) with Y being p-OCH(3), p-OPh, p-CH(3), p-Ph, p-H, p-Cl, m-Cl, and p-NO(2). The relative rates (k(Y)/k(H)) exhibit excellent rho(+)/sigma(+) Hammett correlations with rho(+) < 0, indicating a polar TS. Activation parameters (DeltaH()(Y) and DeltaS()(Y)) and their differential terms (DeltaDeltaH()(Y)(-)(H) and DeltaDeltaS()(Y)(-)(H)) were obtained from the Eyring plot. Differential activation terms (DeltaDeltaH()(Y)(-)(H) and DeltaDeltaS()(Y)(-)(H)) disclose an isokinetic relation with p-CH(3), p-Ph, p-H, p-Cl, and m-Cl (isokinetic temp, 230 K). However, p-OCH(3), and p-OPh show negative deviations, and a positive deviation occurs with p-NO(2). Plot of DeltaDeltaH()(Y)(-)(H) vs sigma(+) exhibits a good linear relation (r = 0.95) with a slope (alpha(1) = -3.34). A better linear correlation (r = 0.97) and steeper slope (alpha(2) = -5.22) were observed for TDeltaDeltaS()(Y)(-)(H) vs sigma(+). Negatively larger slope (alpha(2) = -5.22) may point to entropy control of rates. Differential activation parameters (DeltaDeltaH()(Y)(-)(H) and DeltaDeltaS()(Y)(-)(H)) reflect variations of activation process. Differential activation entropies (DeltaDeltaS()(Y)(-)(H)) are discussed in terms of contributions of translational and rotational entropies. Similar deviation behaviors of p-OCH(3), p-OPh, and p-NO(2) were again observed for the both plots. p-NO(2) can strongly destabilize the cationic site of the polar TS but serves an eminent spin delocalizer for the homolytic TS.  相似文献   

14.
The kinetics of the reaction between [S(2)MoS(2)Cu(SC(6)H(4)R-4)](2-)(R = MeO, H, Cl or NO(2)) and CN(-) to form [S(2)MoS(2)CuCN](2-) have been studied in MeCN using stopped-flow spectrophotometry. In all cases, the rate law is of the form, Rate ={k+k(2)(R)[CN(-)]}[S(2)MoS(2)Cu(SC(6)H(4)R-4)(2-)]. It is proposed that both k and k correspond to associative substitution mechanisms. The k pathway involves attack by CN(-) at the copper site followed by dissociation of the thiolate. The k pathway involves attack of the solvent (MeCN) at the copper site, followed by dissociation of the thiolate to form [S(2)MoS(2)Cu(NCMe)](-). Subsequent rapid substitution of the coordinated solvent by cyanide produces [S(2)MoS(2)CuCN](2-). The evidence that both the k and k pathways involve associative mechanisms are: (i) the 4-R-substituent on the thiolate ligand has a similar effect on both k and k, with electron-withdrawing 4-R-substituents facilitating substitution; (ii) both the k and k pathways are associated with similar activation parameters (for k(1)(H): DeltaH++ = 5.5 +/- 0.5 kcal mol(-1), DeltaS++ = -23.9 +/- 2.0 cal deg(-1) mol(-1); for k(2)(H): DeltaH++ = 2.3 +/- 0.5 kcal mol(-1), DeltaS++ = - 23.9 +/- 2.0 cal deg(-1) mol(-1)) and (iii) addition of C(6)H(5)S(-) results in a similar increase in both k and k.  相似文献   

15.
The structures and relative energies of the conformers of phenylcyclohexane, and 1-methyl-1-phenylcyclohexane have been calculated at theoretical levels including HF/6-31G, B3LYP/6-311G, MP2/6-311G, MP2/6-311(2df,p), QCISD/6-311G, and QCISD/6-311G(2df,p). The latter gives conformational enthalpy (DeltaH degrees ), entropy (DeltaS degrees ), and free energy (DeltaG degrees ) values for phenylcyclohexane that are in excellent agreement with the experimental data. The calculations for 1-methyl-1-phenylcyclohexane find a free energy difference of 1.0 kcal/mol at -100 degrees C, favoring the conformation having an axial phenyl group, that is in only modest agreement with the experimental value of 0.32 +/- 0.04 kcal/mol. The origin of the phenyl rotational profiles for the conformers of phenylcyclohexane and 1-methyl-1-phenylcyclohexane is discussed.  相似文献   

16.
A computational modeling of the protonation of corannulene at B3LYP/6-311G(d,p)//B3LYP/6-311G(d,p) and of the binding of lithium cations to corannulene at B3LYP/6-311G(d,p)//B3LYP/6-31G(d,p) has been performed. A proton attaches preferentially to one carbon atom, forming a sigma-complex. The isomer protonated at the innermost (hub) carbon has the best total energy. Protonation at the outermost (rim) carbon and at the intermediate (bridgehead rim) carbon is less favorable by ca. 2 and 14 kcal mol(-)(1), respectively. Hydrogen-bridged isomers are transition states between the sigma-complexes; the corresponding activation energies vary from 10 to 26 kcal mol(-)(1). With an empirical correction obtained from calculations on benzene, naphthalene, and azulene, the best estimate for the proton affinity of corannulene is 203 kcal mol(-)(1). The lithium cation positions itself preferentially over a ring. There is a small energetic preference for the 6-ring over the 5-ring binding (up to 2 kcal mol(-)(1)) and of the convex face over the concave face (3-5 kcal mol(-)(1)). The Li-bridged complexes are transition states between the pi-face complexes. Movement of the Li(+) cation over either face is facile, and the activation energy does not exceed 6 kcal mol(-)(1) on the convex face and 2.2 kcal mol(-)(1) on the concave face. In contrast, the transition of Li(+) around the corannulene edge involves a high activation barrier (24 kcal mol(-)(1) with respect to the lowest energy pi-face complex). An easier concave/convex transformation and vice versa is the bowl-to-bowl inversion with an activation energy of 7-12 kcal mol(-)(1). The computed binding energy of Li(+) to corannulene is 44 kcal mol(-)(1). Calculations of the (7)Li NMR chemical shifts and nuclear independent chemical shifts (NICS) have been performed to analyze the aromaticity of the corannulene rings and its changes upon protonation.  相似文献   

17.
d0 Tungsten alkylidyne alkyl complex (Me3SiCH2)3W(CSiMe3)(PMe3) (4a) was found to undergo a rare, PMe3-promoted exchange with its bis(alkylidene) tautomer (Me3SiCH2)2W(=CHSiMe3)2(PMe3) (4b). Thermodynamic studies of the exchange showed that 4b is favored and gave Keq and the enthalpy and entropy of the equilibrium: DeltaH degrees = -1.8(0.5) kcal/mol and DeltaS degrees = -1.5(1.7) eu. Kinetic studies of the alpha-H migration between 4a and 4b by variable-temperature NMR gave rate constants k1 and k-1 for the reversible reactions and activation enthalpies and entropies: DeltaH1 = 16.2(1.2) kcal/mol and DeltaS1 = -22.3(4.0) eu for the forward reaction (4a --> 4b); DeltaH2 = 18.0(1.3) kcal/mol and DeltaS2 = -20.9(4.3) eu for the reverse reaction (4b --> 4a). Ab initio calculations at the B3LYP level revealed that PMe3 binds with the bis(alkylidene) tautomer relatively more strongly than with the alkylidyne tautomer and thus stabilizes the bis(alkylidene) tautomer.  相似文献   

18.
Guest exchange in an M(4)L(6) supramolecular assembly was previously demonstrated to proceed through a nonrupture mechanism in which guests squeeze through apertures in the host structure and not through larger portals created by partial assembly dissociation. Focusing on the [Ga(4)L(6)](12-) assembly [L = 1,5-bis(2',3'-dihydroxybenzamido)naphthalene], the host-guest kinetic behavior of this supramolecular capsule is defined. Guest self-exchange rates at varied temperatures and pressures were measured to determine activation parameters, revealing negative DeltaS and positive DeltaV values [PEt(4)(+): DeltaH = 74(3) kJ mol(-1), DeltaS = -46(6) J mol(-1) K(-1), k(298) = 0.003 s(-)); NEt(4)(+): DeltaH = 69(2) kJ mol(-1), DeltaS = -52(5) J mol(-1) K(-1), k(298) = 0.009 s(-1); NMe(2)Pr(2)(+): DeltaH = 52(2) kJ mol(-1), DeltaS = -56(7) J mol(-1) K(-1), DeltaV = +13(1) cm(3) mol(-1), k(298) = 4.4 s(-1); NPr(4)(+): DeltaH = 42(1) kJ mol(-1), DeltaS = -102(4) J mol(-1) K(-1), DeltaV = +31(2) cm(3) mol(-1), k(298) = 1.4 s(-1)]. In PEt(4)(+) for NEt(4)(+) exchange reactions, egress of the initial guest (G1) is found to be rate determining, with increasing G1 and G2 (the displacing guest) concentrations inhibiting guest exchange. This inhibition is explained by the decreased flexibility of the host imparted by exterior, or exohedral, guest interactions by both the G1 and G2 guests. Blocking the exohedral host sites with high concentrations of the smaller NMe(4)(+) cation (a weak endohedral guest) enhances PEt(4)(+) for NEt(4)(+) guest exchange rates. Finally, guest displacement reactions also demonstrate the sensitivity of guest exchange to thermodynamic endohedral guest binding affinities. When the initial guest (G1) has a weaker affinity for the host, G2 concentration dependence is observed in addition to dependence on the G2 binding strength.  相似文献   

19.
The bond dissociation energies for a series of silyl peroxides have been calculated at the G2 and CBS-Q levels of theory. A comparison is made with the O-O BDE of the corresponding dialkyl peroxides, and the effect of the O-O bond strength on the activation barrier for oxygen atom transfer is discussed. The O-O bond dissociation enthalpies (DeltaH(298)) for bis (trimethylsilyl) peroxide (1) and trimethylsilyl hydroperoxide (2) are 54.8 and 53.1 kcal/mol, respectively at the G2 (MP2) and CBS-Q levels of theory. The O-O bond dissociation energies computed at G2 and G2(MP2) levels for bis(tert-butyl) peroxide and tert-butyl hydroperoxide are 45.2 and 48.3 kcal/mol, respectively. The barrier height for 1,2-methyl migration from silicon to oxygen in trimethylsilyl hydroperoxide is 47.9 kcal/mol (MP4//MP2/6-31G). The activation energy for the oxidation of trimethylamine to its N-oxide by bis(trimethylsilyl) peroxide is 28.2 kcal/mol (B3LYP/6-311+G(3df,2p)// B3LYP/6-31G(d)). 1,2-Silicon bridging in the transition state for oxygen atom transfer to a nucleophilic amine results in a significant reduction in the barrier height. The barrier for the epoxidation of E-2-butene with bis(dimethyl(trifluoromethyl))silyl peroxide is 25.8 kcal/mol; a reduction of 7.5 kcal/mol relative to epoxidation with 1. The activation energy calculated for the epoxidation of E-2-butene with F(3)SiOOSiF(3) is reduced to only 2.2 kcal/mol reflecting the inductive effect of the electronegative fluorine atoms.  相似文献   

20.
Organotitanium fluorides (C5Me4R)TiF3 (R = H, Me, Et) sublimate with formation of crystalline dimers. From solution, we obtained crystals of dimers and tetramers. The tetramer [{(C5Me5)TiF3}4] irreversibly dissociates in the solid state to dimers (DeltaH = 8.33 kcal mol(-1)). The variable-temperature (1)H and (19)F NMR spectroscopy measurements of the toluene-d(8) solution of [{(C5Me5)TiF3}2] revealed at 202 K one monomeric, two dimeric (with C2h and Cs symmetry), two tetrameric (with D2 and C2v symmetry), and two trimeric (both C2 symmetry) molecules. With the increase in temperature and dilution of the solution, the composition of the solution shifts to the smaller molecules. The thermodynamic and activation parameters for the reversible dissociation of dimers to monomers in the solution are DeltaH = 9.2 kcal mol(-1), DeltaS = 24.2 cal mol(-1) K(-1), DeltaH(double dagger) = 12.2 kcal mol(-1), DeltaS(double dagger) = 9.7 cal mol(-1) K(-1). The dissociation path with a weakly double-bridged transition-state dimer was proposed. The thermodynamic parameters for the reversible dissociation of the C2v tetramer to the dimers in solution are DeltaH = 7.9 kcal mol(-1) and DeltaS = 26.8 cal mol(-1) K(-1). From both tetramers, the D2 molecule is 0.34(5) kcal mol(-1) lower in enthalpy and 6.5(5) cal mol(-1) K(-1) lower in entropy than the C2v molecule. The structures of both trimers were proposed. The low-temperature 19F NMR spectra of the CDCl3 solution of [{(C5Me5)TiF3}2] are consistent with equilibria of a monomer, two dimers (with C2h and Cs symmetry), and a trimer. The vapor pressure osmometric molecular mass determination of CDCl3 solution of [{(C5Me5)TiF3}2] at 302 K is consistent with the equilibrium of the dimer and the monomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号