首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Spatial control over the self‐assembly of synthetic molecular fibers through the use of light‐switchable catalysts can lead to the controlled formation of micropatterns made up of hydrogel structures. A photochromic switch, capable of reversibly releasing a proton upon irradiation, can act as a catalyst for in situ chemical bond formation between otherwise soluble building blocks, thereby leading to fiber formation and gelation in water. The use of a photoswitchable catalyst allows control over the distribution as well as the mechanical properties of the hydrogel material. By using homemade photomasks, spatially structured hydrogels were formed starting from bulk solutions of small molecule gelator precursors through light‐triggered local catalyst activation.  相似文献   

2.
Autocatalysis and self‐assembly are key processes in developmental biology and are involved in the emergence of life. In the last decade both of these features were extensively investigated by chemists with the final goal to design synthetic living systems. Herein, we describe the autonomous growth of a self‐assembled soft material, that is, a supramolecular hydrogel, able to sustain its own formation through an autocatalytic mechanism that is not based on any template effect and emerges from a peptide (hydrogelator) self‐assembly. A domino sequence of events starts from an enzymatically triggered peptide generation followed by self‐assembly into catalytic nanofibers that induce and amplify their production over time, resulting in a 3D hydrogel network. A cascade is initiated by traces (10?18 m ) of a trigger enzyme, which can be localized allowing for a spatial resolution of this autocatalytic buildup of hydrogel growth, an essential condition on the route towards further cell‐mimic designs.  相似文献   

3.
The self‐organized micropatterns of high aspect ratio polymer nanofibers were prepared via a facile nanoporous wetting strategy. Various micropatterns with labyrinth‐like or honeycomb‐like topography can be formed in a controllable manner by adjusting the nanoporous template's nanochannel characteristic (deep‐hole or through‐hole), the size of nanopores, and the wetting time. The honeycomb‐like micropattern shows a little higher hydrophobicity than labyrinth‐like micropattern when the diameters of their nanofibers are similar. The formation of various self‐organized micropatterns is mainly dependant on the dilation stress and interaction between nanofibers during the template's removal and solvent evaporation process. The confining or free conditions of unreleased nanofibers' tips in nanopores determine the topography of the resultant self‐organized micropattern, i.e., labyrinth‐like or honeycomb‐like. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1280–1289, 2008  相似文献   

4.
A glucose oxidase (GOx)‐mediated glucose metabolism was in vitro mimicked and employed to regulate the self‐assembly of peptide‐based building blocks. In this new stimuli‐responsive self‐assembly system, two peptide‐based building blocks, respectively, having aspartic acid (gelator 1 ) and lysine (gelator 2 ) residues were designed and prepared. When adding glucose and GOx to the aqueous solution of gelator 1 or the self‐assembled fibrillar hydrogel of gelator 2 to construct glucose metabolism system, the metabolic product (gluconic acid) can trigger the protonation of the peptide molecules and induce the phase transitions of gelators 1 (sol‐gel) and 2 (gel‐sol). Because this glucose metabolism regulated peptide self‐assembly is built on the oxidation of glucose, it can be used as a simple visual biosensor for glucose detection.  相似文献   

5.
A microfluidic technique was employed to fabricate polydiacetylene (PDA)‐embedded hydrogel microfibers. By taking advantage of calcium ion‐induced insoluble hydrogel formation, supramolecularly assembled diacetylene (DA)‐surfactant complexes were successfully immobilized in the calcium alginate fibers. Thus, instantaneous microfiber formation was observed when the core flow of DA supramolecules‐containing alginate solution met the sheath flow of calcium ions. UV irradiation of the resulting fibers afforded blue colored PDAs, and the formation of a conjugated polymer was confirmed by heat‐induced phase transition and by Raman spectroscopy. By adjusting the core and sheath flow rates, PDA‐embedded hydrogel fibers of various sizes were obtained.  相似文献   

6.
The ability to construct self‐healing scaffolds that are injectable and capable of forming a designed morphology offers the possibility to engineer sustainable materials. Herein, we introduce supramolecular nested microbeads that can be used as building blocks to construct macroscopic self‐healing scaffolds. The core–shell microbeads remain in an “inert” state owing to the isolation of a pair of complementary polymers in a form that can be stored as an aqueous suspension. An annealing process after injection effectively induces the re‐construction of the microbead units, leading to supramolecular gelation in a preconfigured shape. The resulting macroscopic scaffold is dynamically stable, displaying self‐recovery in a self‐healing electronic conductor. This strategy of using the supramolecular assembled nested microbeads as building blocks represents an alternative to injectable hydrogel systems, and shows promise in the field of structural biomaterials and flexible electronics.  相似文献   

7.
Localized molecular self‐assembly processes leading to the growth of nanostructures exclusively from the surface of a material is one of the great challenges in surface chemistry. In the last decade, several works have been reported on the ability of modified or unmodified surfaces to manage the self‐assembly of low‐molecular‐weight hydrogelators (LMWH) resulting in localized supramolecular hydrogel coatings mainly based on nanofiber architectures. This Minireview highlights all strategies that have emerged recently to initiate and localize LMWH supramolecular hydrogel formation, their related fundamental issues and applications.  相似文献   

8.
The formation of coaxial p–n heterojunctions by mesoscale alignment of self‐sorted donor and acceptor molecules, important to achieve high photocurrent generation in organic semiconductor‐based assemblies, remains a challenging topic. Herein, we show that mixing a p‐type π gelator (TTV) with an n‐type semiconductor (PBI) results in the formation of self‐sorted fibers which are coaxially aligned to form interfacial p–n heterojunctions. UV/Vis absorption spectroscopy, powder X‐ray diffraction studies, atomic force microscopy, and Kelvin‐probe force microscopy revealed an initial self‐sorting at the molecular level and a subsequent mesoscale self‐assembly of the resulted supramolecular fibers leading to coaxially aligned p–n heterojunctions. A flash photolysis time‐resolved microwave conductivity (FP‐TRMC) study revealed a 12‐fold enhancement in the anisotropic photoconductivity of TTV/PBI coaxial fibers when compared to the individual assemblies of the donor/acceptor molecules.  相似文献   

9.
Soft colloidal particles such as hydrogel microspheres assemble at air/water or oil/water interfaces, where the soft colloids are highly deformed and their surface polymer chains are highly entangled with each other. Herein, we report the formation of robust one‐dimensional, string‐like colloidal assemblies through self‐organization of hydrogel microspheres with shape anisotropy at the air/water interface of sessile droplets. Shape‐anisotropic hydrogel microspheres were synthesized via two‐step polymerization, whereby a hydrogel shell was formed onto preformed rigid microellipsoids. The shape anisotropy of the hydrogel microspheres was confirmed by transmission electron microscopy and high‐speed atomic force microscopy as well as by light‐scattering measurements. The present findings are crucial for the understanding of natural self‐organization phenomena, where “softness” influences microscopic assembled structures such as those of Nostoc bacteria.  相似文献   

10.
Insight is provided into the aggregation thermodynamics associated to hydrogel formation by molecular gelators derived from L ‐valine and L ‐isoleucine. Solubility data from NMR measurements are used to extract thermodynamic parameters for the aggregation in water. It is concluded that at room temperature and up to 55 °C, these systems form self‐assembled fibrillar networks in water with quite low or zero enthalpic component, whereas the entropy of the aggregation is favorable. These results are explained by considering that the hydrophobic effect is dominant in the self‐assembly. However, studies by NMR and IR spectroscopy reveal that intermolecular hydrogen bonding is also a key issue in the aggregation process of these molecules in water. The low enthalpy values measured for the self‐assembly process are ascribed to the result of a compensation of the favorable intermolecular hydrogen‐bond formation and the unfavorable enthalpy component of the hydrophobic effect. Additionally, it is shown that by using the hydrophobic character as a design parameter, enthalpy‐controlled hydrogel formation, as opposed to entropy‐controlled hydrogel formation, can be achieved in water if the gelator is polar enough. It is noteworthy that these two types of hydrogels, enthalpy‐versus entropy‐driven hydrogels, present quite different response to temperature changes in properties such as the minimum gelator concentration (mgc) or the rheological moduli. Finally, the presence of a polymorphic transition in a hydrogel upon heating above 70 °C is reported and ascribed to the weakening of the hydrophobic effect upon heating. The new soft polymorphic materials present dramatically different solubility and rheological properties. Altogether these results are aimed to contribute to the rational design of molecular hydrogelators, which could be used for the tailored preparation of this type of soft materials. The reported results could also provide ground for the rationale of different self‐assembly processes in aqueous media.  相似文献   

11.
The synthesis, self‐assembly, and gelation ability of a series of organogelators based on perylene bisimide (PBI) dyes containing amide groups at imide positions are reported. The synergetic effect of intermolecular hydrogen bonding among the amide functionalities and π–π stacking between the PBI units directs the formation of the self‐assembled structure in solution, which beyond a certain concentration results in gelation. Effects of different peripheral alkyl substituents on the self‐assembly were studied by solvent‐ and temperature‐dependent UV‐visible and circular dichroism (CD) spectroscopy. PBI derivatives containing linear alkyl side chains in the periphery formed H‐type π stacks and red gels, whereas by introducing branched alkyl chains the formation of J‐type π stacks and green gels could be achieved. Sterically demanding substituents, in particular, the 2‐ethylhexyl group completely suppressed the π stacking. Coaggregation studies with H‐ and J‐aggregating chromophores revealed the formation of solely H‐type π stacks containing both precursor molecules at a lower mole fraction of J‐aggregating chromophore. Beyond a critical composition of the two chromophores, mixed H‐aggregate and J‐aggregate were formed simultaneously, which points to a self‐sorting process. The versatility of the gelators is strongly dependent on the length and nature of the peripheral alkyl substituents. CD spectroscopic studies revealed a preferential helicity of the aggregates of PBI building blocks bearing chiral side chains. Even for achiral PBI derivatives, the utilization of chiral solvents such as (R)‐ or (S)‐limonene was effective in preferential population of one‐handed helical fibers. AFM studies revealed the formation of helical fibers from all the present PBI gelators, irrespective of the presence of chiral or achiral side chains. Furthermore, vortex flow was found to be effective in macroscopic orientation of the aggregates as evidenced from the origin of CD signals from aggregates of achiral PBI molecules.  相似文献   

12.
《化学:亚洲杂志》2017,12(16):2029-2032
The development of an effective adsorbent for cleansing polluted water is required for environmental purification. In this respect, a supramolecular hydrogel constructed by the self‐assembly of small molecules could be a strong candidate. Adsorption experiments of organic dyes were performed using supramolecular hydrogels of amphiphilic tris‐urea 1 . Cationic organic dyes were adsorbed efficiently; indeed, the adsorption of methylene blue was as high as 4.19 mol equivalents relative to 1 . Two luminescence peaks were observed in the rhodamine 6G‐adsorbed supramolecular hydrogels, and their ratios varied with the amount of dye adsorbed. Fluorescence microscopy images of the supramolecular hydrogel at lower dye levels exhibited fibrous fluorescence consistent with the fibrous aggregates of 1 . According to these results, adsorption may proceed gradually, that is, occurring initially on the fibers and later in the aqueous spaces of the supramolecular hydrogel.  相似文献   

13.
Multivalent carbohydrate–lectin interactions play a crucial role in bacterial infection. Biomimicry of multivalent glycosystems represents a major strategy in the repression of bacterial growth. In this study, a new kind of glycopeptide (Naphthyl‐Phe‐Phe‐Ser‐Tyr, NMY) scaffold with mannose modification is designed and synthesized, which is able to perform supramolecular self‐assembly with the assistance of catalytic enzyme, and present multiple mannose ligands on its self‐assembled structure to target mannose‐binding proteins. Relying on multivalent carbohydrate–lectin interactions, the glycopeptide hydrogel is able to bind Escherichia coli (E. coli) in high specificity, and result in bacterial adhesion, membrane disruption and subsequent cell death. In vivo wound healing assays reveal that this glycopeptide hydrogel exhibits considerable potentials for promoting wound healing and preventing E. coli infection in a full‐thickness skin defect mouse model. Therefore, through a specific mannose–lectin interaction, a biocompatible hydrogel with inherent antibacterial activity against E. coli is achieved without the need to resort to antibiotic or antimicrobial agent treatment, highlighting the potential role of sugar‐coated nanomaterials in wound healing and control of bacterial pathogenesis.  相似文献   

14.
A three‐dimensional DNA hydrogel was generated by self‐assembly of short linear double‐stranded DNA (dsDNA) building blocks equipped with sticky ends. The resulting DNA hydrogel is thermoresponsive and the length of the supramolecular dsDNA structures varies with temperature. The average diffusion coefficients of the supramolecular dsDNA structures formed by self‐assembly were determined by diffusion‐ordered NMR spectroscopy (DOSY NMR) for temperatures higher than 60 °C. Temperature‐dependent rheological measurements revealed a gel point of 42±1 °C. Below this temperature, the resulting material behaved as a true gel of high viscosity with values for the storage modulus G′ being significantly larger than that for the loss modulus G′′. Frequency‐dependent rheological measurements at 20 °C revealed a mesh size (ξ) of 15 nm. AFM analysis of the diluted hydrogel in the dry state showed densely packed structures of entangled chains, which are also expected to contain multiple interlocked rings and catenanes.  相似文献   

15.
Considering the excellent performance of halloysite as a catalyst support and in an attempt to benefit from the concept of nanoreactors in the catalysis, an innovative catalytic system has been designed, in which acrylamide and bis‐acrylamide were photo‐polymerized in the presence of palladated halloysite. The novel precipitation photo‐polymerization method avoided the formation of an extended polymeric network, but led to the formation of co‐polymer on the halloysite periphery. The co‐polymer exhibited good swellability in aqueous media and formed hydrogel. This hydrophilic environment around catalytic palladated halloysite can be considered as a nanoreactor that can concentrate the substrate and bring them into the vicinity of the palladated halloysite. This catalytic system was used for promoting hydrogenation of hydrophobic nitro arenes in aqueous media. To avoid immiscibility of hydrophobic substrates and hydrophilic nature of the nanoreactor, that emerged from swelling of hydrogel, β‐cyclodextrin (CD) was utilized as phase transfer agent. The results confirmed high catalytic activity of this catalytic system. Even highly hydrophobic substrates could tolerate hydrogenation under this protocol to furnish the corresponding product in high yield. Finally, the contribution of both CD and hydrogel to the catalysis was confirmed. Moreover, studying the recyclability of the catalyst as well as Pd leaching proved the high recyclability of the catalyst and low leaching of Pd nanoparticles.  相似文献   

16.
The development of synthetic helical structures undergoing stimuli‐responsive chirality transformations is important for an understanding of the role of chirality in natural systems. However, controlling supramolecular chirality in entropically driven assemblies in aqueous media is challenging. To develop stimuli‐responsive assemblies, we designed and synthesized pyrazine derivatives with l ‐alanine groups as chiral building blocks. These systems undergo self‐assembly in aqueous media to generate helical fibers and the embedded alanine groups transfer their chirality to the assembled structures. Furthermore, these helical fibers undergo a Ni2+‐induced chirality transformation. The study demonstrates the role of intermolecular hydrogen bonding, π–π stacking, and the hydrophobic effect in the Ni2+‐mediated transition of helical fibers to supercoiled helical ensembles which mimic the formation of superstructures in biopolymers.  相似文献   

17.
A novel strategy was developed for the in situ incorporation of silver nanoparticles into the supramolecular hydrogel networks, in which colloidally stable silver hydrosols were firstly prepared in the presence of an amphiphilic block copolymer of poly(oxyethylene)‐poly(oxypropylene)‐poly(oxyethylene) and then mixed with aqueous solution of α‐cyclodextrin. The analyses from rheology, X‐ray diffraction, and scanning electron microscopy confirmed the formation of the supramolecular‐structured hydrogels hybridized with silver nanoparticles. In particular, the colloidal stability of the resultant silver hydrosol and its gelation kinetics in the presence of α‐cyclodextrin as well as the viscoelastic properties of the resultant hybrid hydrogel were investigated under various concentrations of the used block copolymer. It was found that the used block copolymer could act not only as the effective reducing and stabilizing agents for the preparation of the silver hydrosol but also as the effective guest molecule for the supramolecular self‐assembly with α‐cyclodextrin. In addition, the effects of silver nanoparticles on the gelation process and the hydrogel strength were also studied. Such a hybrid hydrogel material could show a good catalytic activity for the reduction of methylene blue dye by sodium borohydride. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 740–749, 2009  相似文献   

18.
Supramolecular structures with strain‐stiffening properties are ubiquitous in nature but remain rare in the lab. Herein, we report on strain‐stiffening supramolecular hydrogels that are entirely produced through the self‐assembly of synthetic molecular gelators. The involved gelators self‐assemble into semi‐flexible fibers, which thereby crosslink into hydrogels. Interestingly, these hydrogels are capable of stiffening in response to applied stress, resembling biological intermediate filaments system. Furthermore, strain‐stiffening hydrogel networks embedded with liposomes are constructed through orthogonal self‐assembly of gelators and phospholipids, mimicking biological tissues in both architecture and mechanical properties. This work furthers the development of biomimetic soft materials with mechanical responsiveness and presents potentially enticing applications in diverse fields, such as tissue engineering, artificial life, and strain sensors.  相似文献   

19.
Higher‐order super‐helical structures derived from biological molecules are known to evolve through opposite coiling of the initial helical fibers, as seen in collagen protein. A similar phenomenon is observed in a π‐system self‐assembly of chiral oligo(phenyleneethylene) derivatives (S )‐ 1 and (R )‐ 1 that explains the unequal formation of both left‐ and right‐handed helices from molecule having a specific chiral center. Concentration‐ and temperature‐dependent circular dichroism (CD) and UV/Vis spectroscopic studies revealed that the initial formation of helical aggregates is in accordance with the molecular chirality. At the next level of hierarchical self‐assembly, coiling of the fibers occurs with opposite handedness, thereby superseding the command of the molecular chirality. This was confirmed by solvent‐dependent decoiling of super‐helical structures and concentration‐dependent morphological analysis.  相似文献   

20.
The reversible regulation of catalytic activity is a feature found in natural enzymes which is not commonly observed in artificial catalytic systems. Here, we fabricate an artificial hydrolase with pH‐switchable activity, achieved by introducing a catalytic histidine residue at the terminus of a pH‐responsive peptide. The peptide exhibits a conformational transition from random coil to β‐sheet by changing the pH from acidic to alkaline. The β‐sheet self‐assembles to form long fibrils with the hydrophobic edge and histidine residues extending in an ordered array as the catalytic microenvironment, which shows significant esterase activity. Catalytic activity can be reversible switched by pH‐induced assembly/disassembly of the fibrils into random coils. At higher concentrations, the peptide forms a hydrogel which is also catalytically active and maintains its reversible (de‐)activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号