首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 79 毫秒
1.
Thermo‐chemotherapy combining photothermal therapy (PTT) with chemotherapy has become a potent approach for antitumor treatment. In this study, a multifunctional drug‐delivery nanoplatform based on polyethylene glycol (PEG)‐modified mesoporous silica‐coated bismuth selenide nanoparticles (referred to as Bi2Se3@mSiO2‐PEG NPs) is developed for synergistic PTT and chemotherapy with infrared thermal (IRT) imaging of cancer cells. The product shows no/low cytotoxicity, strong near‐infrared (NIR) optical absorption, high photothermal conversion capacity, and stability. Utilizing the prominent photothermal effect, high‐contrast IRT imaging and efficient photothermal killing effect on cancer cells are achieved upon NIR laser irradiation. Moreover, the successful mesoporous silica coating of the Bi2Se3@mSiO2‐PEG NPs cannot only largely improve the stability but also endow the NPs high drug loading capacity. As a proof‐of‐concept model, doxorubicin (DOX) is successfully loaded into the NPs with rather high loading capacity (≈50.0%) via the nanoprecipitation method. It is found that the DOX‐loaded NPs exhibit a bimodal on‐demand pH‐ and NIR‐responsive drug release property, and can realize effective intracellular drug delivery for chemotherapy. The synergistic thermo‐chemotherapy results in a significantly higher antitumor efficacy than either PTT or chemotherapy alone. The work reveals the great potential of such core–shell NPs as a multifunctional drug‐delivery nanosystem for thermo‐chemotherapy.  相似文献   

2.
A seeded watermelon‐like mesoporous nanostructure (mSiO2@CdTe@SiO2, mSQS) composed of a novel dendritic mesoporous silica core, fluorescent CdTe quantum dots (QDs), and a protective solid silica shell is successfully fabricated by loading QDs into dendritic mesoporous silica nanoparticles through electrostatic interaction, and then coating with a solid silica shell by the modified Stöber method. The shell thickness of mSQS can be tuned from 0 to 32 nm as desired by controlling the reaction parameters, including the amount of silica precursor, tetraethyl orthosilicate, that is introduced, the solvent ratio (H2O:ethanol), and the amount of catalyst (NH3?H2O). These fluorescent mSiO2@QDs@SiO2 nanoparticles possess excellent stability and thickness‐dependent cytotoxicity, and are successfully applied to bioimaging.  相似文献   

3.
Semiconductor quantum dots (QDs) are promising fluorescence probes for immuofluorescence assay in the biological applications. However, water solubilization and non-specific binding are two critical issues to be addressed for the practical uses. Here, we reported a new type of QDs with combined silica and polymer coating. QDs with excellent colloidal properties were prepared via carboxylation of the amino groups on the surface of silica-coated QDs by reacting with multi-carboxyl poly (acrylic acid) (PAA). Hydrodynamic size of PAA-functionalized silica-coated QDs was around 40 nm. They were highly fluorescent (about 47.8% quantum yield). No precipitate of QDs was observed after 3 month storage at 4 °C. When cancer cells (HeLa) were used, the functionalized QDs exhibited little or no non-specific cellular binding. The results from in vitro experiments indicated that PAA-functionalized silica-coated QDs-antibody bioconjugates had excellent antigen-capture ability and exhibited little or no non-specific binding to polystyrene spheres which were used to immobilize the antigen for immuoflurescence assay. The PAA-functionalized silica-coated QDs with improved colloidal properties could serve as excellent alternative fluorescent probes for biodetection.  相似文献   

4.
A dual-drug delivery, pH-responsive composite nanoplatform (MAPD NPs) that can respond to two biological windows is developed to improve the efficacy of synergetic chemotherapic/photothermal/chemodynamic therapy (CDT) against tumors. This nanoplatform is surface-modified polydopamine (PDA) with excellent biocompatibility as the shell and Ag NPs as the catalyst for CDT. The curcumin (Cur) acts as an organic ligand to be encapsulated in metal−biomolecule frameworks (Bio-MOFs) by self-assembly, and Bio-MOF acts as a delivery carrier to deliver of DOX•HCl and then releases the Cur when it degrades in vivo. Moreover, Bio-MOF can be taken up by cells faster and accelerate cell death compared to free Cur. PDA modification enables MAP (PDA@MOF-Ag) to have photothermal properties under 808 and 1064 nm light irradiation, which not only improves the biocompatibility of MAP but also makes it produce high heat and abundant ·OH. The photothermal performance of MAP is stable after irradiation at 808 or 1064 nm, and the photothermal conversion efficiency reaches 63.57% and 26.25%. The survival rate of HeLa cells co-incubation with MAPD NPs after irradiation at 808 and 1064 nm decreases to 19.52 ± 0.69% and 30.48 ± 0.49%, respectively, providing a feasible scheme for the realization of deep tumor killing.  相似文献   

5.
Development of advanced theranostics for personalized medicine is of great interest. Herein, a multifunctional mesoporous silica‐based drug delivery carrier has been developed for efficient chemo/photothermal therapy. The unique Au nanoframes@mSiO2 spheres are elaborately prepared by utilizing Ag@mSiO2 yolk–shell spheres as the template through spatially confined galvanic replacement method. Compared with the Ag@mSiO2 yolk–shell spheres, the resultant Au nanoframes@mSiO2 spheres show a strong and broad near‐infrared (NIR) absorbance in the 550–1100 nm region, high surface areas, and good biocompatibility. When irradiated with a NIR laser with a power intensity of 1 W cm?2 at 808 nm, they can become highly localized heat sources through the photothermal effect. Moreover, the photothermal effect of the Au nanoframes can significantly promote the fast release of doxorubicin. The in vitro studies show obvious synergistic effects combining photothermal therapy and chemotherapy in the Au nanoframes@mSiO2 spheres against Hela cells. It is believed that the as‐obtained multifunctional vehicles provide a promising platform for the combination of hyperthermia and chemotherapy for cancer treatment application.  相似文献   

6.
In this experiment, we successfully developed nanocarriers in the form of gold nanoflowers coated with two layers of silica for the purposes of drug loading and NIR (near-infrared) photothermal therapy for the treatment of oral cancer. The gold nanoflowers converted NIR laser energy into heat energy. The cores were coated with a thin silica layer (AuNFs@SiO2) to protect the gold nanoflowers from intraparticle ripening. The second layer was mesoporous silica (AuNFs@SiO2@mSiO2), which acted as a nanocarrier for anticancer drug (DOX) loads. The mean effective diameter of the nanoparticles was approximately 150–200 nm, whereas the peak absorption of the AuNFs was 684 nm. After the AuNFs were encapsulated by the silica shells, the plasmonic absorption peak of AuNFs@SiO2 and AuNFs@SiO2@mSiO2 exhibited a red shift to 718 nm. When exposed to an 808 nm NIR laser, these crystals showed an obvious photothermal conversion in the NIR region and a highly efficient release of DOX. Biocompatibility was assessed in vitro using Cell Counting Kit-8 assays, and the results showed that the nanocarriers induced no obvious cytotoxicity. This nanomaterial could be considered a new type of material that shows promising potential for photothermal-chemotherapy against malignant tumours, including those of oral cancers.  相似文献   

7.
Trioctylphosphine oxide capped cadmium selenide quantum dots, synthesized in organic media were rendered water soluble by silica overcoating. Silanisation was done by a simple reverse microemulsion method using aminopropyl silane as the silica precursor. Further, the strong photoluminescence of the silica-coated CdSe quantum dots has been utilized to visualize rabbit adipose tissue-derived mesenchymal stem cells (RADMSCs) and Daltons lymphoma ascites (DLA) cancerous cells in vitro. Subsequently the in vivo fluorescence behaviours of QDs in the tissues were also demonstrated by intravenous administration of the QDs in Swiss albino mice. The fluorescence microscopic images in the stem cells, cancer cells and semi-thin sections of mice organs proved the strong luminescence property of silica-coated quantum dots under biological systems. These results establish silica-coated CdSe QDs as extremely useful tools for molecular imaging and cell tracking to study the cell division and metastasis of cancer and other diseases.  相似文献   

8.
The toxicological effects of silica-coated CdSe quantum dots (QDs) were investigated systematically on human cervical cancer cell line. Trioctylphosphine oxide capped CdSe QDs were synthesized and rendered water soluble by overcoating with silica, using aminopropyl silane as silica precursor. The cytotoxicity studies were conducted by exposing cells to freshly synthesized QDs as a function of time (0–72 h) and concentration up to micromolar level by Lactate dehydrogenase assay, MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] assay, Neutral red cell viability assay, Trypan blue dye exclusion method and morphological examination of cells using phase contrast microscope. The in vitro analysis results showed that the silica-coated CdSe QDs were nontoxic even at higher loadings. Subsequently the in vivo fluorescence was also demonstrated by intravenous administration of the QDs in Swiss albino mice. The fluorescence images in the cryosections of tissues depicted strong luminescence property of silica-coated QDs under biological conditions. These results confirmed the role of these luminescent materials in biological labeling and imaging applications.  相似文献   

9.
Water-soluble, mercaptosuccinic acid (MSA)-capped CdTe/CdS/ZnS core/double shell quantum dots (QDs) were prepared by successive growth of CdS and ZnS shells on the as-synthesized CdTe/CdSthin core/shell quantum dots. The formation of core/double shell structured QDs was investigated by ultraviolet-visible (UV–Vis) absorption and photoluminescence (PL) spectroscopy, PL decay studies, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The core/double shell QDs exhibited good photoluminescence quantum yield (PLQY) which is 70% higher than that of the parent core/shell QDs, and they are stable for months. The average particle size of the core/double shell QDs was ~3 nm as calculated from the transmission electron microscope (TEM) images. The cytotoxicity of the QDs was evaluated on a variety of cancer cells such as HeLa, MCF-7, A549, and normal Vero cells by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) cell viability assay. The results showed that core/double shell QDs were less toxic to the cells when compared to the parent core/shell QDs. MCF-7 cells showed proliferation on incubation with QDs, and this is attributed to the metalloestrogenic activity of cadmium ions released from QDs. The core/double shell CdTe/CdS/ZnS (CSS) QDs were conjugated with transferrin and successfully employed for the biolabeling and fluorescent imaging of HeLa cells. These core/double shell QDs are highly promising fluorescent probe for cancer cell labeling and imaging applications.  相似文献   

10.
Gold decorated NaYF4:Yb,Er/NaYF4/silica (core/shell/shell) upconversion (UC) nanoparticles (~70–80 nm) were synthesized using tetraethyl orthosilicate and chloroauric acid in a one-step reverse microemulsion method. Gold nanoparticles (~6 nm) were deposited on the surface of silica shell of these core/shell/shell nanoparticles. The total upconversion emission intensity (green, red, and blue) of the core/shell/shell nanoparticles decreased by ~31% after Au was deposited on the surface of silica shell. The upconverted green light was coupled with the surface plasmon of Au leading to rapid heat conversion. These UC/silica/Au nanoparticles were very efficient to destroy BE(2)-C cancer cells and showed strong potential in photothermal therapy.  相似文献   

11.
Bloodstream infection with methicillin‐resistant Staphylococcus aureus (MRSA) and other drug‐resistant bacteria kill several million people in the world every year. Detection of drug‐resistant bacteria in the blood stream is clinically important to save lives. Driven by this need, multifunctional theranostic nanoplatforms have been developed for simultaneous targeted imaging and multimodal photodestruction of MRSA in a whole‐blood sample. Experimental data for the whole‐blood sample spiked with MRSA show that the theranostic nanoplatform can be used for fluorescence imaging after magnetic separation even in a 10?5:1 ratio. A targeted photodynamic and photothermal combined treatment shows that the multimodal treatment regime can dramatically enhance the possibility of destroying MRSA in vitro. Therefore, our developed theranostic nanoplatform have a great potential as a fluorescent marker and as a light absorber for combined therapy in clinical settings. The possible mechanisms and operating principles are discussed for targeted imaging and combined therapeutic actions using theranostic nanoplatform.  相似文献   

12.
Photothermal therapy, an excellent therapeutic approach, has received much attention in recent years. Herein, a novel diketopyrrolopyrrole polymer (DPP-BDP) is prepared, which shows intense near-infrared (NIR) optical absorption and admirable photothermal conversion efficacy. Impressively, after assembly into nanoparticles (DB-FA), the as-prepared conjugated polymer demonstrates a uniformly distributed size around 200 nm with remarkable NIR absorption at 808 nm. Additionally, it displays high biocompatibility and photostability. More interestingly, the obtained DB-FA NPs are uptaken by cancer cells and present excellent anticancer in vitro and in vivo under 0.8 W cm−2 or 1 W cm−2 NIR laser irradiation, respectively. Hence, this work is expected to pave the way for using conjugated-polymer nanoparticles as a powerful photothermal agents for anticancer applications.  相似文献   

13.
《Current Applied Physics》2020,20(2):320-325
A facile method is developed for the fabrication of magnetic iron oxide nanoparticle-hollow mesoporous silica spheres (IONP-HMSs) and explored their potential application in drug delivery. Through the self-assembling process of IONPs and the formation of mesoporous silica shells, the IONP-HMSs with hollow interior cavity were obtained. The cetyltrimethyl ammonium bromide (CTAB) encapsulated IONP-containing spheres served as the template to establish the mesoporous silica shells. Typical anti-cancer drug, doxorubicin hydrochloride (DOX) was applied for drug loading and release process of IONP-HMSs, which demonstrated the IONP-HMSs have a high drug loading efficiency and allow pH-trigged release of DOX in vitro. Moreover, the IONP-HMSs exhibited excellent biocompatibility and enhanced DOX therapeutic efficacy to HeLa cells. Compared with traditional methods, the reported microemulsion-based method for the synthesis of IONP-HMSs enables the formation of hollow-structured nanocomposite without any complex template-removing process, which could pave the way to improving the therapeutic efficacy in drug delivery system.  相似文献   

14.
A series of surface-modified mesoporous silica endowing with acid-base properties have been successfully synthesized in one pot by in situ introduction of zirconium and magnesium salts into the initial mixture of synthesizing mesoporous silica (SBA-15) and this method combines into a single step to form a novel material with a periodically ordered mesoporous backbone and specific chemical reactivity of the acid-basic sites. X-ray diffraction, high-resolution transmission electron microscopes (HRTEM), N2 adsorption, FT-IR transmission spectra, 29Si MAS NMR spectra, NH3- and CO2-temperature programmed desorption (TPD) are employed to characterize the titled mesoporous materials. The results indicate that the product possesses excellent acid-basic properties with well mesoporous structure, which make it promising for their application in heterogeneous catalysis and adsorption-separation processes.  相似文献   

15.
Biocompatible single‐component theranostic nanoagents instinctly affording multiple imaging modalities with satisfying therapeutic functions are highly desirable for anticancer treatments. Although cobalt‐based phosphides are well‐recognized as competent electrocatalysts, their potentials for biomedical applications remain unexplored. In this work, cobalt phosphide nanoparticles (CoP NPs) are developed to be a powerful theranostic agent for multimodal imaging and anticancer photothermal therapy. The uniform CoP NPs in a size of ≈21 nm are synthesized via a facile thermal decomposition method, followed by surface modification. The resultant CoP NPs exhibit excellent compatibility and stability in water as well as various physiological solutions. Supported by the good biocompatibility, strong near‐infrared absorption, and high photothermal conversion property, significant photothermal effect of the NPs is demonstrated, realizing efficient hyperthermia ablation on cancer cells. Importantly, the CoP NPs have shown considerable capabilities on high‐contrast in vitro and in vivo triple‐modal imaging, including infrared thermal (IRT), photoacoustic (PA), and T2‐weighted magnetic resonance (MR) imaging. This work has unraveled the promising potentials of CoP‐based nanoagent for precise diagnosis and efficient therapy.  相似文献   

16.
作为一种新型荧光纳米材料,氧化石墨烯量子点(GO QDs)凭借其良好的水溶性和生物相容性得到广泛的关注。以氧化石墨烯为原料,过氧化氢为氧化剂,一步水热法在90 min内快速制备氧化石墨烯量子点,实现了快速、高效及绿色制备氧化石墨烯量子点。所制备得到的氧化石墨烯量子点分布均匀,透射电镜(TEM)图片表明氧化石墨烯量子点粒径分布在2.25~5.25 nm,傅里叶红外光谱(FTIR)和X射线电子能谱(XPS)显示氧化石墨烯量子点表面含有大量的羟基、羧基、羰基等含氧功能团,表明氧化石墨烯量子点具有很好的水溶性。荧光发射光谱(PL)表明氧化石墨烯量子点具有激发波长依赖性。基于其独特的纳米结构,良好的光学性能和生物相容性,氧化石墨烯量子点可替代传统荧光纳米材料应用于细胞成像。  相似文献   

17.
Various C‐doped metal oxide nanoparticles (NPs) are prepared from metal nitrates in poly‐(methyl vinyl ether‐co‐maleic anhydride) (PVM/MA) nanoreactors. The loading of metal nitrates in the nanoreactors is realized via a process of solution‐enhanced dispersion by supercritical CO2. When the temperature exceeds the thermal decomposition temperature of the nitrates, the nitrates‐loaded nanoreactors transform into C‐doped metal oxide NPs. ZnO, NiO, and Co3O4 NPs as representative of the doped oxides are successfully fabricated. A precise control over the doping concentration and doping site in the lattice is achieved by changing the mass ratio between PVM/MA and metal nitrate. The controllable carbon doping avoids undesirable aggregation of carbon species and metal oxide NPs, endows the NPs with broad and strong absorption bands in the visible light region, and creates channels for separation of photo‐generated electrons and holes. In this regard, the resultant C‐doped metal oxide NPs exhibit excellent photocatalytic, photo‐induced antibacterial, and photothermal performances.  相似文献   

18.
The semiconductor quantum dots (QDs) can be very efficient to tune the response of photocatalyst of TiO2 to visible light. In this study, CdS QDs formed in situ with about 8 nm have been successfully deposited onto the surfaces of TiO2 nanotubes (TNTs) to form TNTs/CdS QDs nanocomposites by use of a simple bifunctional organic linker, thiolactic acid. The diffuse reflectance spectroscopy (DRS) spectra of as prepared samples showed that the absorption edge of the TNTs/CdS composite is extended to visible range, with absorption edge at 530 nm. The photocatalytic activity and stability of TNTs/CdS were also evaluated for the photodegradation of rhodamine B. The results showed that when TNTs/CdS QDs was used, photocatalytic degradation of RhB under visible light irradiation reached 91.6%, higher than 45.4 and 30.5% for P25 and TNTs, respectively. This study indicated that the TNTs/CdS QDs nanocomposites were superior catalysts for photodegradation under visible light irradiation compared with TNTs and P25 samples, which may find wide application as a powerful photocatalyst in environmental field.  相似文献   

19.
The spatial self-phase modulation (SSPM) of phosphorus-based nanomaterials is widely studied and developed as passive nonlinear photonic devices for applications in all-optical switches, logic gates, information converters, etc. In this work, violet phosphorus quantum dots (VP QDs) are prepared and characterized in three different solvents, their SSPM is investigated, and their spatial asymmetric light propagation performances are demonstrated. It is shown that VP QDs prepared in three different solvents exhibit different bandgaps, mainly due to the interaction between the dangling bonds of VP QDs and functional groups in different solvents. The SSPM experiment characterizes the nonlinear optical response of solvent-dependent VP QDs. It is found that VP QDs exhibit strong nonlinear optical effect and their nonlinear refractive indexes are comparable to other phosphorus-based 2D materials. Unlike the previously reported principle of spatial asymmetric light propagation (i.e., a cascaded sample based on SSPM composed of nanomaterials with excellent nonlinear refraction and SnS2 with reverse saturation absorption), the spatial asymmetric light propagation performance based on SSPM is demonstrated using a cascaded sample of VP QDs with significantly different nonlinear optical response prepared in two different solvents.  相似文献   

20.
In this paper, a simple synthesis method of small-size( about 50 nm in diameter), high magnetic and fluorescent bi-functional silica composite nanoparticles were developed, in which water-soluble Fe3O4 magnetic nanoparticlels (MNs) and CdTe quantum dots (QDs) were directly incorporated into a silica shell by reverse microemulsion method. The high luminescent QDs can be used as luminescent marker, while the high magnetic MNs allow the manipulation of the bi-functional silica composite nanoparticles by external magnetic field. Poly (dimethyldiallyl ammonium chloride) was used to balance the electrostatic repulsion between CdTe QDs and silica intermediates to enhance the fluorescence intensity of MNs-QDs/SiO2 composite nanoparticles. The optical property, magnetic property, size characterization of the bi-functional composite nanoparticles were studied by UV-Vis and PL emission spectra, VSM, TEM, SEM. The stabilities toward time, pH and ionic strength and the effect of MNs on the fluorescence properties of bi-functional silica composite nanoparticles were also studied in detail. By modifying the surface of MNs-QDs/SiO2 composite nanoparticles with amino and methylphosphonate groups, biologically functionalized and monodisperse MNs-QDs/SiO2composite nanoparticles can be obtained. In this work, bi-functional composite nanoparticles were conjugated with FITC labeled goat anti-rabbit IgG, to generate novel fluorescent-magnetic-biotargeting tri-functional composite nanoparticles, which can be used in a number of biomedical application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号