首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
UV radiation (280–400 nm) is known to affect phytoplankton in negative, neutral and positive ways depending on the species or levels of irradiation energy. However, little has been documented on how photosynthetic physiology and growth of red tide alga respond to UVR in a long-term period. We exposed the cells of the marine red tide diatom Skeletonema costatum for 6 days to simulated solar radiations with UV-A (320–400 nm) or UV-A + UV-B (295–400 nm) and examined their changes in photosynthesis and growth. Presence of UV-B continuously reduced the effective photosynthetic quantum yield of PSII, and resulted in complete growth inhibition and death of cells. When UV-B or UV-B + UV-A was screened off, the growth rate decreased initially but regained thereafter. UV-absorbing compounds and carotenoids increased in response to the exposures with UVR. However, mechanisms for photoprotection associated with the increased carotenoids or UV-absorbing compounds were not adequate under the continuous exposure to a constant level of UV-B (0.09 W m?2, DNA-weighted). In contrast, under solar radiation screened off UV-B, the photoprotection was first accomplished by an initial increase of carotenoids and a later increase in UV-absorbing compounds. The overall response of this red tide alga to prolonged UV exposures indicates that S. costatum is a UV-B-sensitive species and increased UV-B irradiance would influence the formation of its blooms.  相似文献   

2.
Tissue equivalent radiochromic gel material containing ferrous ions, xylenol-orange ion indicator and gelatin as gelling agent (FXG) is known to be sensitive to γ- and X-rays; hence it has been used for ionizing radiation dosimetry. Changes in optical absorbance properties of FXG material over a wide region in the visible spectrum were found to be proportional to the radiation absorbed dose. An earlier study demonstrated the sensitivity of FXG gel detector to ultraviolet radiation and therefore that could give quantitative measure for UV exposure. This study focuses on the detection of UVA radiation (315–400 nm), which forms an important part (~97%) of the natural solar UV radiation reaching the earth surface. A solar UV simulator device was used to deliver UVA radiation to FXG samples. The beam was optically modified to irradiate gel samples at an exposure level about 58 W/m2, which is comparable to the summer natural UVA radiation measured outside the laboratory building at midday (~60 W/m2). Experimental results were used to generate mathematical second order formulas that give the relationship between UVA dose and optical absorbance changes observed at two wavelengths in the visible region of the spectrum—430 and 560 nm.  相似文献   

3.
A novel UV dosimeter is described comprising a tetrazolium dye, neotetrazolium chloride (NTC), dissolved in a film of polymer, polyvinyl alcohol (PVA). The dosimeter is pale yellow/colourless in the absence of UV light, and turns red upon exposure to UV light. The spectral characteristics of a typical UV dosimeter film and the mechanism through which the colour change occurs are detailed. The NTC UV dosimeter films exhibit a response to UV light that is related to the intensity and duration of UV exposure, the level of dye present in the films and the thickness of the films themselves. The response of the dosimeter is temperature independent over the range 20–40 °C and, like most UV dosimeters, exhibits a cosine-like response dependence upon irradiance angle. The introduction of a layer of a UV-screening compound which slows the rate at which the dosimeter responds to UVR enables the dosimeter response to be tailored to different UV doses. The possible use of these novel dosimeters to measure solar UV exposure dose is discussed.  相似文献   

4.
Basic characteristics of Radix W, a commercially available undyed polymethylmethacrylate (PMMA) dosimeter conventionally used by readout at 320 nm, were studied in the dose range of 0.5–8 kGy, for its wide application especially for the evaluation of the sterilization dose and the quality assurance of food irradiation. The characteristics of dose response, the effect of irradiation temperature, and its stability after irradiation were examined over candidate readout wavelengths of 270–320 nm. The dose response readout at shorter wavelength is higher than that at longer wavelength, and 280 nm is the suitable readout wavelength for measurement of dose range of 0.5–8 kGy. The post-irradiation stability of dose response for 6 kGy is less than 1% within 24 h after irradiation at an irradiation temperature of 20 °C. Dose response is higher with temperature at irradiation temperatures in the range of −40 to 20 °C.  相似文献   

5.
Both continuous UV lights and pulsed UV lasers have potentials to inactivate known and emerging viruses. Bovine viral diarrhea virus (BVDV), from the Pestivirus genus, is known to be a common viral contamination in (fetal) bovine serum (FBS). Also, BVDV has been used in the blood product industry as a surrogate for Hepatitis C virus (HCV), due to its similarity in structure and genome. Germicidal UV lamp with the wavelength of 254 nm and Nd:YAG laser (pulsed UV laser) in its third and fourth harmonic with the wavelengths of 355 and 266 nm, respectively, were used. BVDV suspended in PBS or FBS were exposed to different intensities and doses and then reduction in BVDV titer were calculated. To complete inactivation of BVDV suspended in PBS and PBS containing 5% FBS, 1.6 (t = 30 min) and 3.2 (t = 60 min) J/cm2 were used. The minimum doses for inactivation of BVDV suspended in PBS with the 355 and 266 nm of pulsed UV laser were 352 and 92.25 J/cm2. Also, the minimum doses for inactivation of BVDV suspended in FBS with 355 and 266 nm wavelengths of pulsed UV laser were 704 and 127 J/cm2. To evaluate the irradiated FBS quality to support cell culture growth, FBS was treated with the dose of 190.5 J/cm2 and 266 nm pulsed UV laser and was used to grow Vero cells, in comparison with a control group. The viability of cells in two groups was identical and the statistical evaluation showed no significant difference in 12 passages.  相似文献   

6.
The photolysis of glyoxal in synthetic air was investigated in a quartz cell at 298 K using three types of UV sources (TL/12 lamps (275–380 nm), TL/03 lamps (390–470 nm) and mercury lamps (254 nm)) and products were identified and quantitatively analyzed using long-path FTIR spectroscopy. For all light sources, the observed products were CO, HCHO and HCOOH. Absolute quantum yields were determined using Cl2 and Br2 as actinometers. Photolysis in the first absorption band of glyoxal, using TL/12 lamps, provided an overall quantum yield of ΦT = 0.97 ± 0.05, independent of total pressure ranging from 100 to 700 Torr air. The absolute quantum yields obtained with the TL/03 lamps, covering the second absorption band of glyoxal, showed dependency on total pressure, ranging from ΦT = 0.12 at 100 Torr to ΦT = 0.042 at 700 Torr, which can be expressed as a Stern–Volmer-type equation 1/ΦT = (6.80 + 251.8) × 10−4 × P (Torr).By combining the product yields with literature data, we deduced the detailed picture of glyoxal photolysis, including the dependency of the quantum yield of each particular channel: CHOCHO +   2HCO (Φ1); CHOCHO +   H2 + 2CO (Φ2); CHOCHO +   H2CO + CO (Φ3) on the applied wavelength. The product quantum yields indicate that dissociation into two HCO radicals is the most important pathway under atmospheric conditions. The mean photolysis rate was measured under solar radiation in the EUPHORE outdoor chamber to be Jobs = 1.04 ± 0.10 × 10−4 s−1, corresponding to a mean effective quantum yield ϕeff = 0.035 ± 0.007. Although glyoxal has a very low effective quantum yield, photolysis remains an important removal path in the atmosphere.  相似文献   

7.
K2Al2B2O7 (KABO) is a new nonlinear optical crystal capable of laser harmonic generation in the UV range. However, abnormal UV absorption prevents its application in effectively generating UV light with wavelength shorter than 300 nm. The transmittance spectra of the grown crystals show distinct absorption bands at 216 nm and 264 nm. It is observed that the UV absorption is strongly correlated with iron impurity at a parts per million (ppm) level. Furthermore, electron paramagnetic resonance (EPR) spectra of the absorbing crystals show a strong signal at g = 2.00 position corresponding to a Fe3+ center. A new crystal growth method which reduces the iron content has been proposed and results show that the new KABO crystal is free from the Fe3+ UV absorptions.  相似文献   

8.
《Comptes Rendus Chimie》2015,18(10):1152-1160
In this study, the optimization and implementation of a homogeneous photo-Fenton process for the decolorization and mineralization of a wastewater containing highly concentrated yellow 5 (E102) dye, resulting from an industry placed in the suburbs of Medellin (Colombia), is presented. Response surface methodology was applied as a tool for the optimization of operational conditions such as initial dyestuff concentration, H2O2 concentration, and UV-radiation power (number of lamps). The decolorization, degradation and mineralization efficiencies were used as response variables. The following conditions were found to be optimal for decolorization and mineralization of yellow 5: UV radiation of 365 nm (4 W, one lamp), dye concentration of 200 mg/L, Fe2+ concentration of 1.0 mM, H2O2 concentration of 1.75 mL/L, treatment time of 180 min, Fe2+ concentration of 1 mM and pH = 3. Under these conditions (180 min), the photo-Fenton process allowed us to reach ca. 100% of color dye degradation, 99% of COD degradation, and 85% of mineralization (TOC). The scavenging effect of the Cl anion on the photodegradation process was also confirmed.  相似文献   

9.
Time-integrated spatially-resolved Laser Induced Breakdown Spectroscopy (LIBS) has been used to investigate spectral emissions from laser-induced plasmas generated on steel targets. Instead of detecting spectral lines in the visible/near ultraviolet (UV), as investigated in conventional LIBS, this work explored the use of spectral lines emitted by ions in the shorter wavelength vacuum ultraviolet (VUV) spectral region. Single-pulse (SP) and dual-pulse LIBS (DP-LIBS) experiments were performed on standardized steel samples. In the case of the double-pulse scheme, two synchronized lasers were used, an ablation laser (200 mJ/15 ns), and a reheating laser (665 mJ/6 ns) in a collinear beam geometry. Spatially resolved and temporally integrated laser induced plasma VUV emission in the DP scheme and its dependence on inter-pulse delay time were studied. The VUV spectral line intensities were found to be enhanced in the DP mode and were significantly affected by the inter-pulse delay time. Additionally, the influence of ambient conditions was investigated by employing low pressure nitrogen, argon or helium as buffer gases in the ablation chamber. The results clearly demonstrate the existence of a sharp ubiquitous emission intensity peak at 100 ns and a wider peak, in the multi-microsecond range of inter-pulse time delay, dependent on the ambient gas conditions.  相似文献   

10.
Results of the characterization studies on a power bipolar transistor investigated as a possible radiation dosimeter under laboratory condition using electron beams of energies from 2.2 to 8.6 MeV and gamma rays from a 60Co source and tested in industrial irradiation plants having high-activity 60Co γ-source and high-energy, high-power electron beam have previously been reported. The present paper describes recent studies performed on this type of bipolar transistor irradiated with 1.9 and 2.2 MeV electron beams in the dose range 5–50 kGy. Dose response, post-irradiation heat treatment and stability, effects of temperature during irradiation in the range from –104 to +22 °C, dependence on temperature during reading in the range 20–50 °C, and the difference in response of the transistors irradiated from the plastic side and the copper side are reported. DLTS measurements performed on the irradiated devices to identify the recombination centres introduced by radiation and their dependence on dose and energy of the electron beam are also reported.  相似文献   

11.
Gamma radiation processing was found to extend shelf life of fresh turmeric. A 5 kGy radiation dose and 10 °C storage temperature was found to keep peeled turmeric samples microbe free and acceptable until 60 days of storage. The control sample without radiation treatment spoiled within a week of storage. The changes in color, texture and moisture content of fresh turmeric due to radiation treatment were found to be statistically insignificant.  相似文献   

12.
We investigated the potential of ionizing radiation for improving physiological responses, quality, and storage time of fresh guava fruit. Ionizing radiation treatment suppressed the respiration and ethylene production rates and thus retarded the process of fruit ripening during storage. Irradiation treatment also retarded the physical and biochemical changes associated with ripening such as firmness, titratable acidity, soluble solids content, and vitamin C during storage, but for doses higher than 0.25 kGy the vitamin C content decreased. The positive effects of ionizing radiation treatment on delayed fruit ripening and other quality attributes diminished during 22 days of storage at 10 °C. Thus, a combination of ionizing radiation with low-temperature storage (10 °C) did not have much synergistic effect on storage life and quality of guava fruit. In conclusion, ionizing radiation treatment of guava fruit with 0.25 kGy dose increased the postharvest life by 3–4 days, maintained fruit quality, and reduced the decay incidence. The optimal dose (0.25 kGy) for postharvest life extension of guava fruit may be exploited to provide phytosanitary security against many insect pests including fruit flies.  相似文献   

13.
Kinetics of the thermal and photolytic degradation of decabromodiphenyl ether (DBE 209) was studied using HPLC. Samples lost an amount of ∼8.4% (w/w), 24% (w/w), 39.4% (w/w) and 28.5% of the amount of DBE 209 originally present in the samples due to ageing at 25, 60, 90 °C and UV exposure, respectively. The thermal and photolytic release was found to follow the first order kinetics with rate constants estimated to be 3.6 × 10−3, 1.03 × 10−2, 3.6 × 10−2 and 3.94 × 10−2 day−1, respectively. Ageing of the textile samples enhanced the release of the DBE 209 from the backcoated textile. Photodegradation of BDE 209 into lower congeners of brominated flame retardants was also observed for the UV-aged samples.Migration of DBE 209 from the backcoated textile into biological fluids was studied using Head-over-Heels and contact-Blotting test for unaged, thermally and UV aged samples. The presence of biological fluids (sweat, saliva and juice) was found to enhance the migration of DBE 209 compared to water. Migration of BDE 209 into artificial biological fluids is significantly increased for samples previously exposed to UV radiation or thermally aged. An increase from 0.6% (w/w) to a maximum of 2% (w/w) of the amount of BDE 209 migrated into artificial biological fluids due to ageing conditions in the presence of biological fluid was recorded.  相似文献   

14.
The coupling of microwave radiation with photo-Fenton reaction for wastewater treatment was evaluated. This strategy was performed in a focused microwave digestion oven with open vessels. Ultraviolet radiation was obtained from microwave lamps (MWL) activated by microwave radiation. The operational conditions were established considering the extent of degradation of chlorfenviphos and cypermethrin used for bovine ticks (Boophilus michoplus) control. The results were based on residual carbon content, always comparing the procedures in the presence or absence of UV radiation. The combination of MWL and Fenton reaction degraded pesticide residues efficiently (>98%) in about 4 min.  相似文献   

15.
This work deals with absorption and mainly emission spectrometry of a microwave induced surfatron plasma jet launched in ambient air and using an Argon flow carrier gas. The Ar flow rate varies between 1 and 3 L/min and the microwave power between 40 and 60 W. The analysis of the various spectra has led to the determination of the ozone and atomic oxygen concentrations, ultraviolet (UV) irradiance separating UVA, UVB and UVC, gas temperature, plasma electron density and excitation temperature. Most of these diagnostics are spatially resolved along the plasma jet axis. It is shown more particularly that rotational temperature obtained from OH(A-X) spectra ranges between 800 K to 1000 K while the apparent temperature of the plasma jet remains lower than about 325 K which is compatible with biocide treatment without significant thermal effect. The electron density reaches 1.2 × 1014 cm 3, the excitation temperature is about 4000 K, the UVC radiation represents only 5% of the UV radiations emitted by the device, the ozone concentration is found to reach 88 ± 27 ppm in the downstream part of the plasma jet at a distance of 30 mm away from the quartz tube outlet of the surfatron and the atomic oxygen concentration lies between 10 and 80 ppm up to a distance of 20 mm away from the quartz tube outlet. Ozone is identified as the main germicidal active species produced by the device since its concentration is in accordance with bacteria inactivation durations usually reported using such plasma devices. Human health hazard assessment is carried out all along this study since simple solutions are reminded to respect safety standards for exposures to ozone and microwave leakage. In this study, an air extraction unit is used and a Faraday cage is set around the quartz tube of the surfatron and the plasma jet. These solutions should be adopted by users of microwave induced plasma in open air conditions because according to the literature, this is not often the case.  相似文献   

16.
Methylsilicone resin as a polymer precursor for a SiOC ceramic material was cured and foamed by electron beam (EB) irradiation in air prior to the pyrolysis under an inert atmosphere. Methylsilicone foams were obtained without additional foaming agent when exposed to accelerated electrons with radiation doses up to 9 MGy and dose rate of 2.8 kGy/s. During irradiation the polymer was melted and simultaneously gaseous products were formed by the methyl group oxidation and by the poly-condensation crosslinking reactions. The formed gases could not escape from the molten polymer and began to aggregate into bubbles. The effect of the radiation dose on the polymer foam molecular structure, the gel fraction and the ceramic yield was analyzed. The results indicate that the maximum amount of crosslinking in methylsilicone, when EB radiation is used, occurred between 1.0 and 2.0 MGy radiation dose. Methylsilicone foams were pyrolysed in N2 atmosphere at temperatures of 1200 and 1500 °C, resulting in amorphous SiOC and partially crystalline ceramic foams, respectively. A porosity of ~84% was achieved in the pyrolyzed foams, with cell size ranging from 30 to 300 μm and density of about 0.31 g cm?3.  相似文献   

17.
As there is no pasteurization procedure for the manufacture of fresh vegetable juice, both industry and consumers have sought a method for improving the storage stability and shelf-life of this category of products. In this study, the effects of commercially available, non-thermal pasteurization processes, such as gamma and UV irradiation, were compared for their efficacy in sanitizing fresh carrot juice (FCJ). FCJ was manufactured, packaged, and gamma irradiated with doses of 0, 1, 3, and 5 kGy. The manufactured FCJ was also passed through 4 UV light lamps at doses of 3.67, 4.69, and 6.50 kGy. The total aerobic bacterial count of the FCJ approached the legal limit (105 CFU/mL) after manufacturing. Both treatments were effective in reducing the number of total aerobic bacteria, and the reduced number was maintained during storage for 7 days. Gamma irradiation was more effective in suppressing microbial growth during storage. When the doses for UV treatment and gamma irradiation were higher, the inactivation effects were higher. The reduction of ascorbic acid content was greater upon gamma irradiation than UV treatment. No difference was found in the contents of flavonoids and polyphenols in FCJ after either treatment. After 3 days of refrigerated storage, the sensory scores of gamma- or UV-irradiated FCJ were superior to those of the control. The results indicate that both non-thermal treatments were effective in improving storage stability and extending shelf-life, but gamma irradiation was slightly better in suppressing microbial growth after treatment.  相似文献   

18.
Radiation exposure and effective dose received through two routes of exposure, viz. external and internal, via inhalation, by residents of 10 villages belonging to Natural High Background Radiation Areas (NHBRA) of coastal regions of Kanyakumari District and Tamil Nadu in India were studied. While the indoor gamma radiation levels were monitored using Thermo Luminescent Dosimeters (TLDs), the indoor radon and thoron gas concentrations were measured using twin chamber dosimeters employing Solid State Nuclear Track Detectors (SSNTDs, LR-115-II). The average total annual effective dose was estimated and found to be varying from 2.59 to 8.76 mSv.  相似文献   

19.
Cells of the mesocarp of mango cultivar Tommy Atkins were analyzed by Transmission Electron Microscope—TEM to evaluate the effects of doses of 0.5 and 1.0 kGy applied immediately after the fruit and after storage for twenty days at a temperature of 12 °C followed by 5 days of simulated marketing at a temperature of 21 °C. No alteration was found in the structure of the cell wall, middle lamella, and plasma membrane of fruits when analyzed immediately after application of doses. The mesocarp cell structure of the cell wall, middle lamella, and the plasma membrane did however undergo changes after storage. Fruits that received a dose of 0.5 kGy displayed slight changes in cell wall structure and slight disintegration of the middle lamella. Fruits that received a dose of 1.0 kGy displayed more severe changes in the structure of the cell wall, greater middle lamella degradation, and displacement of the plasma membrane.  相似文献   

20.
Structural, optical and electrical properties of multiwalled carbon nanotubes deposited by chemical vapour deposition at 750 °C on sapphire substrate have been investigated. The main results concern the photoconductivity measurements. The photocurrent induced by white light illumination is a linear function of either the bias voltage or the optical power density in wide ranges. The photoresponse increases from the near infrared to the ultraviolet region with decreasing the wavelength of the monochromatic incident radiation in the 325–850 nm range. The photoresponse is strongly correlated to the optical absorbance. The optical and photoconductivity properties explored in multiwalled carbon nanotube samples with relatively large area appear very interesting for the development of light sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号