首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Powders of BaYxCe1 ? xO3 ? δ (x = 0, 0.1 and 0.15) with specific surface area of 6–8 m2g? 1 (BET equivalent particle size of 130–160 nm) were prepared by a modified solid-state route using nanocrystalline BaCO3 and CeO2 raw materials. These powders showed excellent densification at relatively low temperatures. Dense (96–97% relative density) ceramics with submicron grain size (0–4–0.6 µm) were obtained after sintering at 1250–1280 °C. Ceramics sintered at 1450 °C revealed only a moderate grain growth (grain size ≤ 2 µm), uniform microstructure and very high density (≥ 98%). The total conductivity of the submicron ceramics at 600 °C was comparable with the reference values reported in the literature, meaning that the high number of grain boundaries was not a limiting factor. On lowering temperature, the contribution of the blocking grain boundaries becomes progressively more important and the conductivity decreases in comparison to coarse-grained ceramics. Microscopic conductivities of grain interior and grain boundary are the same irrespective of grain size meaning that the different macroscopic behaviour is only determined by a geometric factor (a trivial size effect).  相似文献   

2.
《Current Applied Physics》2010,10(6):1367-1371
Lead-free Bi0.5(Na0.78K0.22)0.5TiO3 (BNKT) piezoelectric ceramics were synthesized by the sol–gel technique. The effects of sintering temperatures on the crystal structure, microstructure, densification, dielectric, ferroelectric and electric field-induced strain behaviors of the BNKT ceramics were investigated. X-ray diffraction patterns exhibited a pure perovskite structure from 1075 to 1150 °C. A scanning electron microscopy study revealed an increase in grain size with increasing sintering temperature. The density of the ceramics sintered at 1150 °C reaches a maximum value of 5.55 g/cm3, which is 96% of the theoretical density. BNKT ceramics sintered at an optimum temperature of 1150 °C exhibited a high remnant polarization of 18.5 μC/cm2, a high electric field-induced strain of 0.20% and dynamic piezoelectric coefficient d331 = (Smax/Emax) of 247 pm/V.  相似文献   

3.
Lead-free non-stoichiometric (K0.470Na0.545)(Nb0.55Ta0.45)O3 (KNNT) textured ceramics were prepared by a reactive templated grain growth method using NaNbO3 (NN) templates. The Plate-like NaNbO3 (NN) templates were synthesized from bismuth layer-structured Bi2.5Na3.5Nb5O18 (BNN) particles by a topochemical microcrystal conversion (TMC) method. Using 5 wt% of NN templates, textured KNNT ceramics were fabricated, and their crystal structure, microstructure, dielectric and piezoelectric properties were compared with non-textured KNNT ceramics prepared by a conventional solid state reaction method. The textured KNNT ceramics exhibited high grain orientation and high dielectric constant. In addition, piezoelectric properties of textured KNNT ceramics were improved, giving a high piezoelectric coefficient d33 = 390 pC/N and piezoelectric coupling coefficient kp = 0.60.  相似文献   

4.
We report here structural and IV characteristics of ZnO varistor with Fe2O3 nanoparticles additions (≤200 nm). It was found that the addition of Fe does not influence the wurtzite structure of ZnO ceramics, while the average grain size was affected. Interestingly, the nonlinear region was clearly observed in the IV characteristics of the samples with Fe = 2.5%, 5% and 10%. Whereas, two nonlinear regions were only observed with further increase of Fe addition above 10% (30% and 50%). Although the values of non-linear coefficient are decreased by the additions of Fe, the breakdown field could be increased up to 7900 V/cm. Furthermore, the electrical conductivity was improved by increasing Fe up to 10%, followed by a decrease with further increase of Fe up to 50%. These results were discussed in terms of Fe2O3 nanosize grains which were formed and localized at the grain boundaries of ZnO ceramics.  相似文献   

5.
In this work, ((1−x)Ba(Fe1/2Ta1/2)O3-xBa(Zn1/3Ta2/3)O3), ((1−x)BFT-xBZT) ceramics with x = 0.00–0.12 were synthesized by the solid–state reaction method. X-ray diffraction data revealed that both the powders and ceramics were of a pure-phase cubic perovskite structure. All ceramics showed large dielectric constants. For the x = 0.12 sample, a very high dielectric constant (>20,600) was observed. A lowering in the dielectric loss compared to pure BFT ceramics was observed with the BZT addition. The impedance measurements indicated that BZT has a strong effect on the bulk grain and grain boundary resistance of BFT ceramics. These results are in agreement with the measured dielectric properties. Based on dielectric and impedance results, (1−x)BFT-xBZT ceramics could be of great interest for high performance dielectric materials applications due their giant dielectric constant behavior.  相似文献   

6.
Single-phase BaFe0.5Nb0.5O3 (BFN) ceramics were prepared by solid-state reaction method and were characterized by X-ray Diffraction (XRD) technique. Then, impedance spectroscopy measurements were conducted in a frequency range from 100 Hz to 1 MHz and in a temperature range from 293 to 600 K. Relaxation phenomena of non-Debye type have been observed in the BFN ceramics, as confirmed by the Cole–Cole plots. The higher values of ε′ at the lower frequencies are explained on the basis of the Maxwell–Wagner (MW) polarization model. Complex impedance analysis enables us to separate the contributions from grains and grain boundaries of our samples. We found that at higher temperatures grain boundary resistance is higher than grain resistance, irrespective of composition.  相似文献   

7.
(1 ? x) K0.5Na0.5NbO3 ? xLiNbO3 (where x = 0.0, 5.0, 5.5, 6.0, and 6.5 wt.%) (KNLN) perovskite structured ferroelectric ceramics were prepared by the solid-state reaction method. X-ray diffraction patterns indicate that single phase was formed for pure KNN while a small amount of second phase (K6Li4Nb10O30, ~3%) was present in LN doped KNN ceramics. Phase analysis indicated the change in the crystal structure from orthorhombic to tetragonal with increase in LN content. The electrical behavior of the ceramics was studied by impedance spectroscopy technique in the high temperature range. Impedance analysis was performed using an equivalent circuit model. The impedance response in pure KNN and KNLN ceramics could be deconvoluted into two contributions, associated with the bulk (grains) and the grain boundaries. Activation energies for conductivity were found to be strongly frequency dependent. The activation energy obtained from dielectric relaxation data was attributed to oxygen vacancies. From PFM we found that the composition with 6.5 wt.% LN displays stronger piezocontrast as compared to pure KNN implying an evidence of a pronounced piezoelectric coefficient.  相似文献   

8.
《Solid State Ionics》2006,177(13-14):1227-1235
Both doped zirconia and ceria have been widely recognized as promising electrolytes in solid oxide fuel cells (SOFC). Total conductivity is an important parameter to evaluate solid electrolytes. It is well know that the contribution to the total conductivity by grain boundaries is especially pronounced for SiO2-contaminated electrolytes. In this study, we report on the different conduction behaviors of grain boundaries (GB) found in SiO2-containing (impure) 8YSZ (8 mol% Y2O3-doped ZrO2) and CGO20 (10 mol% Gd2O3-doped CeO2) ceramics. In the grain size range (∼ 0.5–10 μm) studied, the GB conductivity of impure CGO20 ceramics constantly decreases with increasing grain size, in contrast to that observed in impure 8YSZ electrolytes whose GB conductivity increases almost linearly with grain size. It is also found that the variation in GB conductivity versus grain size is different from case to case, depending on the sintering/annealing conditions used to fabricate the ceramics. Two mechanisms were proposed to explain the GB behaviors of the impure 8YSZ and CGO20 ceramics. For doped ceria, the GB phases are supposed to be inert, which do not react with or dissolve into the matrix. Increasing sintering temperature leads to not only grain growth but also change in viscosity and wetting nature of the GB phases. These two factors promote further propagation of the GB phases along the grain boundaries, leading to an increased GB coverage fraction. For doped zirconia, however, the major factor dominating the GB conduction is the further dissolution of SiO2 into zirconia lattice as a result of increase in sintering temperature or/and time. In addition, we will also evaluate and discuss the validities of the three models that are widely used to analyze the GB conduction in solid electrolytes.  相似文献   

9.
Nanopowders of composition Ce0.9(Eu1 ? xSrx)0.1O2 ? δ (x = 0, 0.1, 0.3, 0.5, and 0.7) were prepared by the Pechini method. The microstructure and properties of powders and sintered ceramics are discussed in this paper. X-ray diffraction (XRD) and Raman spectroscopy revealed that all powders calcined at 550 °C were single phase, with the cubic fluorite-type structure. The good sintering properties of the synthesized nanopowders allowed us to obtain dense ceramics (> 96% theoretical density). Dense ceramics with density higher than 96% of the theoretical value were obtained without the need of sintering aid. The morphology of the sintered ceramics was evidenced by scanning electron microscopy (SEM). The ionic conductivities of doped and co-doped ceria ceramics were investigated as a function of temperature by using AC impedance spectroscopy in the temperature range 250–800 °C. Impedance spectra indicate a significant diminution of grain boundary resistance after partial substitution of Eu with Sr in europia-doped ceria sample, especially in the low and intermediate-temperature range. The best conductivity was evidenced for the Ce0.9Eu0.09Sr0.01O2 ? δ composition.  相似文献   

10.
0.5 mol% Nd-doped (Ba0.85Ca0.15)(Ti0.9Hf0.1)O3 (BCTH-Nd) lead-free ceramics were prepared by a solid-phase twin crystal method, where the effects of sintering condition on structure, electrical and optical properties were studied. All the sintered BCTH-Nd ceramics exhibit pure perovskite structure, dense microstructure with several micron grain size, which tends to increase with elevating sintering temperature. All synthesized ceramics have complex dielectric behavior, which presents normal ferroelectrics characteristic with slight dispersion phenomenon. The BCTH-Nd ceramics exhibit excellent piezoelectric and ferroelectric properties and acceptable dielectric performance when sintered at 1480 °C for 2 h. Under 269 nm light excitation, several fluorescent emission peaks are excited with a whole indigo fluorescence, where the strongest emission peak is emitted at 473 nm, corresponding to the 4G3/2 → 4I9/2 energy level transition of Nd3+. Multifunctional performance is fulfilled in the lead-free BCTH ceramics via rare earth doping, which can broaden the application fields of piezoelectric-based materials.  相似文献   

11.
Lead magnesium niobate, Pb(Mg1/3Nb2/3)O3 (PMN) ceramics were prepared from the columbite method using calcined powders of various milling time (24–96 h). The effects on the grain size and dielectric properties of the ceramics were investigated. The results show that dielectric properties of ceramics are strongly influenced by the milling time of the starting precursors. Higher percentage of perovskite phase was found in the ceramics that was milled longer and thus the dielectric constant was found to increase when compared to the conventional 24 h milled results. Moreover, milling time also affected the particle size of the starting precursors and that of PMN powders. Therefore, milling time did not only affect the particle size of PMN powders but also the resultant grain size and the formation of perovskite phase, consequently affecting the dielectric constant of the ceramics.  相似文献   

12.
Water-based gel precipitation method was first applied to synthesize high purity nano CaZr0.90In0.10O3 ? δ powders suitable for fabricating dense ceramics at lower temperature. By using CaCO3, Zr(NO3)4 and In(NO3)3 as raw materials, PEG as dispersant, CaZr0.90In0.10O3 ? δ with an average particle size of about 40 nm was obtained at 850 °C, which was nearly 350 °C lower than that of traditional solid-state reaction method. Fully densified ceramics with an average grain size of 200–300 nm were obtained at 1350 °C, a temperature about 250 °C lower than that of traditional sintering techniques. Experimental results showed that the flexure stress, total, bulk and grain boundary protonic conductivities of the ceramics were more favorable than those of the ceramics fabricated at 1500 °C and 1600 °C from the powders synthesized by solid-state reaction method.  相似文献   

13.
Perovskite types Ba1−xBi2x/3Ti0.75Zr0.25O3 (with x = 0.0, 0.025, 0.05) ceramics have been prepared through solid state reaction route. The room temperature XRD study suggests that all the compositions have single phase cubic symmetry with space group Pm-3m. Temperature dependent dielectric studies of the ceramics have been investigated in the frequency range of 50 Hz–1 MHz. The densities of the samples are determined using Archimedes’ principle and found to be ∼98% of X-ray density. The dielectric study revealed diffuse phase transition of second order. A broad dielectric anomaly coupled with the shift of dielectric maxima toward a higher temperature with increasing frequency indicates the relaxor-type behavior in the ceramics. The diffusivity increases with increase in Bi contents in the studied composition range. The transition temperature decreases with increase in Bi contents due to the decrease in grain size.  相似文献   

14.
Well-dispersed Nd:Y2O3 powders with uniform particle size of about 60 nm were synthesized from freeze-dried precursors. Highly transparent 2 at.% Nd:YAG ceramics were fabricated from the as-synthesized Nd:Y2O3 powders and commercial Al2O3 powders by vacuum sintering at 1,750 °C for 5 h. Phase evolution, microstructures, and spectroscopic properties of the Nd:YAG transparent ceramics were investigated. Freeze-drying played an important role in the synthesis of high-quality Nd:Y2O3 nanosized powders, which were essential for the fabrication of highly transparent Nd:YAG ceramics. Optical transmittance of a 3-mm thick sample reached 82% in the wavelength range of 200–900 nm. 5.23 W output power was obtained with 14.3 W diode laser pumping, giving a slope efficiency of 36.5%.  相似文献   

15.
Single phase Bi1/2Na1/2Cu3Ti4O12 (BNCTO) ceramics with different grain sizes (1.4–4.3 μm) are prepared by a modified Pechini method to investigate their giant dielectric and nonlinear electrical behaviors. The results show that the giant dielectric and nonlinear electrical behaviors are strongly dependent on grain size. With the increment of grain size, the dielectric constant increases monotonically from 14110 (for 1.4 μm sample) to 36183 (for 4.3 μm sample) at 1 kHz, in accompaniment with the breakdown voltage reducing from 112.5 to 43.2 V/mm and the nonlinear coefficient reducing from 4.9 to 3.4. On the basis of the internal barrier layer capacitor (IBLC) model and the IBLC model of Schottky-type potential barrier, an interpretation of the grain size effect on the giant dielectric and nonlinear electrical behaviors is presented.  相似文献   

16.
Partially textured PbxBa1 ? xNb2O6 ceramics, with compositions around the morphotropic phase boundary, were obtained by the hot forging technique. Scanning electron microscopy revealed that the grains were arranged with their lengthwise direction preferentially in the direction of the forging. From the differences of the X ray diffraction profiles between the samples analyzed in the direction of forging and those analyzed in the pressing direction it was possible to confirm the crystallographic growth habit of the PBN ceramics for the tetragonal and orthorhombic symmetry compositions. The identification of a mixture of tetragonal and orthorhombic symmetry phases in a whole range of studied compositions was also possible. The phase transformation around the morphotropic phase boundary (in this case, tetragonal (4mm) to orthorhombic (m2m)) could be analyzed through the direction change of the polarization vector in partially textured PBN ceramics.  相似文献   

17.
0.7BiFeO3-0.3BaTiO3+1mol% MnO2(0.7BFO-0.3BTO) ceramics were synthesized by conventional solid-state powder method under different calcination temperatures (Tcal) between 770 and 830 °C. The phase structure, microstructure, and ferroelectric and piezoelectric properties changed greatly depending on the applied Tcal. Benefitting from the formation of low defect levels and large grain size and an appropriate morphotropic phase boundary (MPB) with the rhombohedral-to-pseudocubic phase ratio = 49.1 : 50.9, BFO-BTO ceramics calcined at 785 °C showed the best ferroelectric, piezoelectric, and insulating properties (Pr = 23.1 μC/cm2, EC = 25.8 kV/cm, d33 = 167.8 pC/N, kp = 0.342%). Above Tcal = 800 °C, however, the ferroelectric and piezoelectric properties deteriorated because volatilization of Bi and reduction of Fe caused a poor insulating property and high degree of chemical inhomogeneity. Moreover, the ceramics calcined at 785 °C showed a high Curie temperature (TC) of 509.2 °C and excellent thermal aging resistance of d33 up to 450 °C, demonstrating great potential for use in high-temperature applications.  相似文献   

18.
Cr2O3 doped SnO2–Zn2SnO4 composite ceramics were prepared by traditional ceramic processing and the varistor, dielectric properties were investigated. With increasing Cr2O3 content, the breakdown electrical field EB increases from 11 to 92 V/mm and the relative dielectric constant εr measured at 1 kHz, 50 °C decreases from 11,028 to 3412, respectively. The barrier height ?B about 0.8–0.84 eV and the decreasing of SnO2 grain size suggest that the varistor behavior with high εr is originated from SnO2–SnO2 or SnO2–Zn2SnO4 grain boundary. In the dielectric spectra lower than 1 kHz, a dielectric peak is presented and depressed with increasing bias voltage. Similarly, at high temperature, the dielectric constant also presents a dielectric peak in the temperature spectra and the peak becomes faint with increasing frequency. The exhibition of the dielectric peak is thought to be attributed to the conduction of grain boundary since it is accompanied by the sharp increase of dielectric loss. In addition, a dielectric relaxation with the activation energy about 0.4–0.5 eV was observed in the temperature range of 20–100 °C. Based on the results, the formation mechanism of Schottky barriers at grain boundaries and the varistor behavior with high dielectric constant are well understood.  相似文献   

19.
The sintering characteristic and dielectric properties of 0.67PMN–0.33PT ceramics prepared by the molten salt synthesis (MSS) method were investigated. PMN–PT particles synthesized by MSS with smaller grain size and good dispersion could lower the sintering temperature of ceramics; PMN–PT ceramics with relative density above 96% could be obtained in the range 1150–1180 °C. The molten salts species could significantly affect the microstructure and properties of MPN-PT ceramics. In the range 1100–1200 °C, PMN–PT ceramics from the sulfate flux MSS powders showed intergranular fracture, but that from the chloride flux MSS powder showed transgranular fracture. At the same sintering condition, the properties of PMN–PT ceramics from the powders prepared in the chloride flux are better than that from the powders prepared in the sulfate flux, their maximum dielectric constant εmax≈29,385 and piezoelectric constant d33≈660 pC/N. The above results demonstrated that PMN–PT ceramics prepared by the molten salts method possessed excellent piezoelectric and dielectric properties.  相似文献   

20.
《Current Applied Physics》2015,15(11):1332-1336
A CaBi4Ti4O15 (CBTO) ceramic in which the Bi2O3 concentration was controlled from 0 to 10 wt% was fabricated using a solid-state reaction method. Structural analysis by field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) indicated differences in the preferred grain orientation and size of the plate-like grains according to the Bi2O3 concentration. The orientation of plate-like grains was also found to vary with the Bi2O3 concentration. There was no noticeable change trend of dielectric properties with different Bi2O3 concentrations. Relatively low dielectric constants (about 135) were exhibited by the CBTO ceramic with 1 wt% Bi2O3 and CBTO ceramic with 10 wt% Bi2O3 only, and similar values (about 150) were exhibited by the other ceramics. The dielectric loss exhibited a low value in the range of 0.01–0.09 for all samples (frequency range of 1–100 kHz). Regarding the ratio changes of the piezoelectric coefficient (d33) and the ratio of a-axis orientation of plate-like grains, the trends of these two values were shown to be similar. These results suggest that the addition of Bi2O3 greatly influences the microstructure of CBTO ceramics, including the grain size and orientation of plate-like grains. In particular, the change in the preferred grain orientation is closely related to the change in the piezoelectric properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号