首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Pistacia lentiscus L. is known in some Tunisian forest area by its fixed oil used in traditional medicine as an antiseptic product. This investigation is the first to study the antimicrobial activity of P.lentiscus edible oil and its phenolic extract. Oil was extracted from fruits harvested from six provenances located in Tunisia. The antimicrobial activity was tested using disc diffusion assay and the broth dilution method. Kbouch and Sidi Zid oils were most efficient (p < 0.003) against, respectively, Staphylococcus aureus and Aspergillus niger with an inhibition zone of 9.33 mm. The phenolic extract had the largest spectrum of sensitive microorganisms. The minimum inhibitory concentration and minimum bactericidal concentration results showed that all strains were inhibited by both oil and extract.  相似文献   

2.
Heptane (Hep), diethyl ether (Et2O), acetone (Me2CO) and methanolic (MeOH) extracts, as well as ( ? )-usnic acid and squamatic acid, were obtained from thallus of Cladonia uncialis (Cladoniaceae). The antimicrobial activities of these extracts, ( ? )-usnic acid and squamatic acid, were tested against reference strains: Staphylococcus aureus, Escherichia coli and Candida albicans. In addition, Me2CO extract was analysed against 10 strains of Methicillin-resistant S. aureus (MRSA) isolated from patients. All extracts exerted antibacterial activity against the reference strain S. aureus, comparably to chloramphenicol [minimum inhibitory concentration (MIC) = 5.0 μg/mL]. The Me2CO extract exhibited the strongest activity against S. aureus (MIC = 0.5 μg/mL), higher than ( ? )-usnic acid, whereas squamatic acid proved inactive. The Me2CO extract showed potent antimicrobial activity against MRSA (MIC 2.5–7.5 μg/mL). Also no activity of C. uncialis extracts against E. coli and C. albicans was observed.  相似文献   

3.
The essential oil from the leaves of Macleaya cordata R.Br. obtained by hydrodistillation was analysed by gas chromatography/mass spectrometry. Sixty-eight compounds consisting of up to 92.53% of the essential oil were identified. Antioxidant activities of the essential oil were evaluated by using DPPH radical scavenging and β-carotene–linoleic acid assays. The essential oil showed moderate antioxidant activity. In addition, the essential oil exhibited potential antimicrobial activity against all tested microorganisms, with diameters of inhibition zones ranging from 8.7 ± 0.5 to 17.2 ± 1.2 mm and minimum inhibitory concentration values from 125 to 500 μg/mL. We selected the most sensitive bacterium Staphylococcus aureus as model to observe of the action of essential oils of M. cordata on the membrane structure by scanning electron microscopy. The treated cell membranes were damaged severely. The results presented here indicate that the essential oil of M. cordata may be potential sources of antioxidant and antimicrobial agents in the future.  相似文献   

4.
《Analytical letters》2012,45(3):422-432
The composition of the essential oil isolated from the fresh and dry leaves of Ducrosia flabellifolia Boiss. (Apiaceae) was determined by gas chromatography and gas chromatography–mass spectrometry using hydrodistillation and solid phase microextraction (SPME). The hydrodistilled oil of the fresh leaves yielded 38 components, accounting for 98.67% of the total oil content, while thirty components were detected from the fresh leaves by solid phase microextraction (94.85%). Fifty-one and 36 components were identified in the hydrodistilled and SPME oils of the dried leaves amounting to 98.78% and 94.52%, respectively. A total of 25 components accounting for 97.24% of the total composition were characterized in the SPME oil of the fresh flowers. Aliphatic compounds predominated in the volatile fractions of the leaves and flowers of both methods with n-decanol, n-decanal, and dodecanal as the main constituents. The α- and ß-pinene were the major monoterpenoids in the oils. The hydrodistilled oil was screened for its antimicrobial and antioxidant activities. The minimal inhibitory concentration of the volatile oil was determined using a microdilution method in 96 well plates against a panel of gram (+), gram (?) bacteria, and fungi. Overnight cultures of reference strains of Candida albicans, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus were used as test microorganisms. The oil exhibited the best activity against C. albicans (MIC 234 µg/mL) and S. aureus (MIC 234 µg/mL) whereas weak activity was detected against E. coli and P. aeruginosa. No antioxidant activity could be detected.  相似文献   

5.
Lysine-rich peptide, designated as KABT-AMP, was designed and synthesized to supersede the irrational use of chemical antibiotics as standard therapy. KABT-AMP is a 22-amino acid helical cationic peptide (+10) and amphipathic in nature. The antimicrobial kinetics of the peptide was ascertained in the representative strains of gram-positive, gram-negative, and fungal strains, viz., Staphylococcus aureus MTCC 2940, Escherichia coli MTCC 2939, and Candida albicans MTCC 227, respectively. KABT-AMP was synthesized by solid-phase synthesis and purified using reverse-phase high-performance liquid chromatography which resulted in >95 % purity, and matrix-assisted laser desorption/ionization time of flight revealed the mass of the peptide to be 2.8 kDa. KABT-AMP showed significant broad-spectrum antimicrobial activity against the bacterial and fungal strains analyzed in the present study with survivability of 30.8, 30.6, and 31.7 % in E. coli, S. aureus, and C. albicans, respectively, at 6 h. KABT-AMP also demonstrated antibiofilm activity against the tested biofilm forming clinical isolate, Candida tropicalis. The putative membranolytic activity of the peptide was substantiated by electron microscopic analysis. Results reveal that KABT-AMP will exhibit noteworthy antimicrobial activity against multidrug-resistant bacteria and fungus at micromolar concentrations with minimal cytotoxicity and thus could be conceived for biomedical application.  相似文献   

6.
This study was designed to determine the adaptation capability of bitter melon (Momordica charantia L.), which is widely grown in tropical and subtropical climates, in northern parts of Turkey. In this study, plant height, number of fruits, fruit length, fruit width, number of seeds and fruit weight of bitter melon grown in field conditions were determined. The antimicrobial effect of the ethanol extract of fruit and seeds against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Salmonella typhi, Aspergillus niger and Candida albicans microorganisms was tested in vitro by the disc diffusion method. In conclusion, plant height (260 cm), number of fruits (16 per plant), number of seeds (30.2 per fruit), fruit width (3.8 cm), fruit length (10.6 cm) and fruit weight (117.28 g fruit? 1) were determined; fruits were found to have antimicrobial activity against A. niger; oil and seeds were found to have antimicrobial activity against A. niger and E. coli.  相似文献   

7.
A number of novel bicinnolines containing piperazine moieties, 4a – o , were synthesized via polyphosphoric acid‐catalyzed intramolecular cyclization of the respective acyl amidrazone derivatives ( 3a – o ). On the other hand, the amidrazones ( 3a – o ) were prepared by reaction of N′,N″‐(biphenyl‐4,4′‐diyl)bis(2‐oxopropane hydrazonoyl chloride) ( 2 ) with the appropriate cyclic sec‐amines in the presence of trimethylamine in absolute ethanol. Structures of the newly synthesized compounds were confirmed by NMR and mass spectral data. The antitumor activity of compounds 4a – o was evaluated in vitro on human breast cancer MDA‐231 by a cell viability assay. Results revealed that compounds 4k , 4n , and 4o exhibit potential cytotoxic effects (>70%) on the cancer cells. Additionally, the antimicrobial activity of compounds 4a – o was evaluated against three clinical microbial strains: Escherichia coli (Gram‐negative bacteria), Staphylococcus aureus (Gram‐positive bacteria), and Candida albicans (fungi/yeast). Results revealed that compounds 4e and 4k exhibit good activity against all three strains included in the study and that compound 4d displays excellent activity against Saureus strain with a minimum inhibitory concentration value of 0.187 mg/mL.  相似文献   

8.
A new flavonoid, 2-(3,5-dihydroxy-4-methoxy-phenyl)-3,5-dihydroxy-8,8-dimethyl-2,3-dihydro-8H-pyrano[3,2]chromen-4-one, together with previously reported epicatechin was isolated from the ethyl acetate soluble fraction of the methanol extract of the stem bark of Commiphora pedunculata. The structures of these compounds were elucidated based on extensive analysis of their spectral data, including 1 and 2D NMR. The compounds were active against 9 out of 12 tested microorganisms including a resistant strain; vancomycin-resistant entrococci (VRE), Escherichia coli, Staphylococcus aureus and Candida albicans. The zones of inhibition ranged between 22 and 34 mm against the microorganisms. The minimum inhibitory concentration was as low as 6.25 μg/mL against Shigella dysentriae, Bacillus cereus and S. aureus while the minimum bactericidal concentration was as low as 50 μg/mL against Pseudomonas aeruginosa, VRE and C. albicans. This is the first report of the isolation of the compound.  相似文献   

9.
In this study, we evaluated the antimicrobial activity of human β-defensin-1 (hBD-1), human β-defensin-2 (hBD-2) and human β-defensin-3 (hBD-3) against three internationally common probiotic strains of lactic acid bacterium. Our results indicated that hBD-1, hBD-2 and hBD-3 at the range of 0.08–10 μg/mL do not have obvious antimicrobial activity against these strains. Viability of Bifidobacterium longum JDM301 (B. longum JDM301), Bifidobacterium lactis HN019 (B. lactis HN019) and Lactobacillus rhamnosus GG (LGG) were still very high even at concentration of 10 μg hBD/mL. Then, we explored the mechanism of resistance by using carbonyl cyanide 3-chlorophenylhydrazone (CCCP) to inhibit efflux pumps. In the presence of CCCP, hBD-1, hBD-2 and hBD-3 exhibited enhanced antibacterial effect against B. longum JDM301 and B. lactis HN019, but not against LGG. Efflux pumps in B. longum JDM301 and B. lactis HN019 may partly contribute to their resistance to hBD-1, hBD-2, and hBD-3.  相似文献   

10.
A new series of metal complexes [M(L)2] (where M = Sn(II), Pb(II), and HL = semicarbazone, thiosemicarbazone or phenylthiosemicarbazone) have been prepared and characterized by elemental analysis, conductance measurements, molecular weight determinations, UV–visible, infrared, and nuclear magnetic resonance (1H-, 13C-, and 119Sn-NMR) spectral studies. Elemental analysis of the metal complexes suggested 1 : 2 (metal–ligand) stoichiometry. Infrared spectra of the complexes agree with coordination to the metal through the nitrogen of the azomethine (>C=N?) and the oxygen/sulfur of the ketonic/thiolic group. Electronic spectra suggest a distorted tetrahedral geometry for all Schiff base complexes. The bond lengths, bond angles, highest occupied molecular orbital, lowest unoccupied molecular orbital, Mulliken atomic charges, and the lowest energy model structure of the complexes have been determined with DFT calculations. Representative Schiff base and its metal chelates have been screened for their in vitro antibacterial activity against four bacteria, Gram-positive (Bacillus cereus, Staphylococcus aureus) and Gram-negative (Escherichia coli, Klebsiella pneumoniae) and four strains of fungus (Penicillium chrysogenum, Aspergillus niger, Rhizopus nigricans, and Alternaria alternata). The metal chelates possess higher antimicrobial activity than the free ligands.  相似文献   

11.
A synthesis, characterization, and antimicrobial study of a novel benzodipyran analog of chloramphenicol was carried out. Structure–antimicrobial activity relationship study indicates that benzodipyran analog of chloramphenicol was most active against Gram‐positive bacteria, Staphylococcus aureus, and the fungal strains Rhizoctonia bataticola and Penicillium even at minimum inhibitory concentration 10 µg/mL and showed moderate activity in other bacterial and fungal organisms. All the compounds synthesized during the present investigation were characterized by IR, 1H NMR, 13C NMR, ESI‐MS, and elemental analysis.  相似文献   

12.
The hexanic, ethyl acetate and methanolic extracts from branches of Stenocereus stellatus were tested in both the 12-O-tetradecanoylphorbol-13-acetate (TPA) – induced ear oedema model and antimicrobial activity assay. The % of oedema inhibition, the Minimum Inhibitory Concentration (MIC), as well as the polyphenolic and flavonoid content were determined. Also, extracts were analysed by gas chromatography–mass spectrometry (GC–MS). In TPA model, the three extracts showed moderate oedema inhibition. In the antimicrobial activity assay, methanolic extract shows better MIC against all strains. The lowest MICs were for Candida albicans (31 μg/mL) and Rhizopus sp. (15 μg/mL). Also, 50.78 mg eq. of gallic acid/g extract of polyphenol and 115.12 mg eq. of catequine/g extract of flavonoids content were founded in ethyl acetate extract. In the chromatographic analysis, β-sitosterol, β-amyrine, betulin and some other molecules were identified. The results show that S. stellatus possess antimicrobial activities against some fungus species.  相似文献   

13.
The essential oil obtained from Wedelia urticifolia growing in Hunan Province, China, was analyzed for the first time by capillary GC and GC-MS. A total of 67 constituents, representing 98.68% in essential oil were identified. The major constituents of the oil were: α-pinene (8.85%), limonene (6.38%), carvacrol (6.15%), caryophyllene (6.08%), spathulenol (5.49%), sabinene (5.36%), camphor (4.34%). Antimicrobial potential of oil against bacterial strains (Pseudomonas aeruginosa, Escherichia coli and Bacillus subtilis, and Staphylococcus aureus), yeast strains (Hansenula anomala and Saccharomy cescerevisiae) and molds (Aspergillus niger, Chaetomium globosum, Mucor racemosus, and Monascus anka) was determined by disc diffusion method and broth micro dilution method, respectively. The oil exhibited promising antimicrobial effect as a diameter of zones of inhibition (16.8–24.9 mm). Minimum inhibitory concentration values of oil were ranged 62.5–1000 μg/mL.  相似文献   

14.
Innovative poly‐substituted heterocyclic rings incorporating dioxoisoindoline ( 2 – 25 ) were synthesized through the reaction of dioxoisoindoline derivative 2 as starting compound with various types of reagents. All compounds were characterized by appropriate means of (1H‐NMR, 13C‐NMR, IR, and mass). The prepared compounds were evaluated as antimicrobial agents against Escherichia coli, Staphylococcus aureus, and Candida albicans microorganisms. The tested compounds exhibited low to moderate antibacterial activities and promising results as antifungal agents.  相似文献   

15.
This study represents the first report on the chemical composition and antimicrobial activity of the essential oil from the branches of Jacaranda cuspidifolia Mart. Thirty-three compounds were identified by Gas Chromatography-Mass Spectrometry (GC-MS) and the major constituents of the essential oil were Palmitic acid (31.36%), (Z) ? 9,17-Octadecadienal (12.06%), Ethyl palmitate (3.81%), Perhydrofarnesyl acetone (2.07%), γ-Maaliene (1.88%), and Cedro (1.42%) and 9,12-Octadecadienoic acid ethyl ester (1.42%). The in vitro antimicrobial activities of the essential oil were evaluated by the disc diffusion method, and the inhibition zones against Escherichia coli, Staphylococcus aureus and Candida albicans were 7.10, 8.20 and 7.25 mm, respectively. The oil showed moderate activities against E. coli, S. aureus and C. albicans with minimum inhibition concentration (MIC) values of 17.3 mg/mL, 12.9 mg/mL and 16.0 mg/mL, respectively.  相似文献   

16.
Coreopsis tinctoria flowering (CTF) tops from the Kunlun Mountains in Xinjing (north-western China) have been used for tea production for about a century. This study was to assess antioxidant, nitrite-scavenging and N-nitrosamine inhibitory and antimicrobial activities of the essential oil extracted from CTF tops. The essential oil was extracted through hydrodistillation and its chemical compositions were analysed by GC–MS. Seventy compounds of the oil were identified, representing 81.87% of total oil. The antioxidant capacities of the oil with IC50 values for scavenging DPPH and ABTS were 287.66 ± 12.60 and 1.251 ± 0.127 μg mL? 1, respectively. The nitrite-scavenging and N-nitrosamine inhibitory activities (IC50) were 0.3912 ± 0.0127 and 0.6564 ± 0.036 μg mL? 1, respectively. The oil has a certain antimicrobial capacity, but its capacity was weaker than that of penicillinG (24 μg mL? 1). The oil showed antioxidant and antimicrobial capacities and had a stronger nitrite-scavenging and N-nitrosamine inhibitory properties.  相似文献   

17.
The present study aims to evaluate phytochemical and pharmacological potentials of Dysphania ambrosioides (L.) Mosyakin & Clemants previously known as Chenopodium ambrosioides L. Extraction was carried out using 14 solvents with wide range of polarity to find out the best solvent system for each bioactivity. Total phenolic and flavonoids contents were measured colorimetrically and polyphenolics were quantified via HPLC-DAD analysis. The samples were screened for inhibitory potentials against free radicals, leishmania, cancer cell lines, protein kinase, α-Amylase enzymes and microbial strains. Among all solvents, maximum percentage of extract was recovered from methanol-water fraction of leaves. HPLC analysis exhibited the presence of rutin, myricetin and quercetin. In DPPH assay, methanolic leaf extract exhibited IC50 value of 130.7 ± 0.57 μg/mL. Considerable α-amylase inhibitory, cytotoxic, leishmanicidal and antimicrobial potentials were exhibited by plant samples. D. ambrosioides revealed significant antioxidant, cytotoxic, antimicrobial and anti-diabetic potentials and thus warrant further detailed studies to find novel drugs.  相似文献   

18.
Plantaricin LD1, a bacteriocin produced by Lactobacillus plantarum LD1, was characterized for biochemical and antimicrobial properties. Bacteriocin showed stability at high temperatures (100 °C for 20 min and 121 °C for 15 min under 15 psi pressure), in a pH range of 2.0–8.0 and also in the presence of organic solvents, surfactants and detergents. The crude preparation was not affected by catalase, amylase and lipase but activity was reduced in the presence of pepsin, trypsin and proteinase K showing proteinaceous nature of the compound. The molecular weight of bacteriocin was found to be ~6.5 kDa, and antimicrobial activity was confirmed by bioassay. It inhibited not only related strains but also other Gram-positive and Gram-negative bacteria such as Lactobacillus curvatus NRRL B-4562, Lactococcus lactis subsp. lactis NRRL B-1821, Enterococcus faecium NRRL B-2354, Enterobacter cloacae NRRL B-14298, Micrococcus luteus, Staphylococcus aureus, urogenic Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Shigella flexneri and Vibrio sp. These properties of plantaricin LD1 suggest its applications not only in food safety but in therapeutics as well.  相似文献   

19.
Demethoxycurcumin (DMC) is one of the major constituents in Curcuma longa L., and it is safe at a large dose range. In this study, the antimicrobial activity of DMC on Escherichia coli, Staphylococcus aureus, and Shigella dysenteriae was investigated by microcalorimetry and modified broth microdilution. Minimal inhibitory concentration and 50 % inhibiting concentration were determined by modified broth microdilution, which was fast and economical. Thermokinetic parameters were extracted from the heat-output power curves delineated by microcalorimetry, which was accurate and dynamic, and the multiple parameters were analyzed by similarity analysis and principle component analysis. The results demonstrated that DMC presented good antimicrobial activity, and the sequence of activity was as follows: E. coli > S. aureus > S. dysenteriae. This study provides a useful methodology for the determination of antimicrobial activity of natural products. In addition, it provides the foundation for the exploitation of DMC as a potential antimicrobial prodrug.  相似文献   

20.
Five new pinocembrin derivatives (MC1-MC5) were synthesized by Steglich reaction, and investigated for their antimicrobial, antioxidant, and anti-inflammatory activity. MC2 (oleoyl derivative) and MC3 (linoleoyl derivative) have shown the highest inhibitory effects on bacterial proliferation, with MIC values of 32 μg/mL against Staphylococcus aureus. The docosahexaenoyl derivative MC5 displayed the highest anti-inflammatory activity, decreasing NO production in LPS-stimulated macrophages with an IC50 value of 15.51 μg/mL higher than the positive control diclofenac (IC50 of 39.71 μg/mL). All new synthesized compounds showed no anti-proliferative effects on RAW 264.7 cells. Results demonstrated as the introduction of fatty acid substituents improved the biological profile of pinocembrin. Moreover, the chemical nature of substituents significantly affects the bioactivity. These preliminary results outline the importance to investigate the synthesis of pinocembrin fatty acids derivatives as new and safe anti-microbial/anti-inflammatory agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号