首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Relativistic formulation of Helmholtz’s vorticity transport equation is presented on the basis of Maxwell-like version of Euler’s equation of motion. Entangled characteristics associated with vorticity flux conservation in a vortex tube and in a stream tube are displayed on basis of Greenberg’s theory of spacelike congruence of vortex lines and \(1+1+(2)\) decomposition of the gradient of fluid’s 4-velocity. Vorticity flux surfaces are surfaces of revolution about the rotation axis and are rotating with fluid’s angular velocity due to gravitational isorotation in a stationary axisymmetric perfect fluid configuration. Fluid’s angular velocity, angular momentum per baryon, injection energy, and invariant rotational potential are constant on such vorticity flux surfaces. Gravitation causes distortion of coaxial cylindrical vorticity flux surfaces in the limit of post-Newtonian approximation. The rotation of the fluid with angular velocity relative to vorticity flux surfaces generates swirl which causes the stretching of material vortex lines being wrapped on vorticity flux surfaces. Fluid helicity which is conserved in the fluid’s rest frame does not remain conserved in a locally nonrotating frame because of the existence of swirl. Vortex lines are twist free in the absence of meridional circulations, but the twisting of spacetime due to dragging effect leads to the increase in vorticity flux in a vortex tube.  相似文献   

2.
3.
We simulate the coalescence process of MHD-scale Kelvin-Helmholtz vortices with the electron inertial effects taken into account. Reconnection of highly stretched magnetic field lines within a rolled-up vortex destroys the vortex itself and the coalescence process, which is well known in ordinary fluid dynamics, is seen to be inhibited. When the magnetic field is initially antiparallel across the shear layer, on the other hand, multiple vortices are seen to coalesce continuously because another type of magnetic reconnection prevents the vortex decay. This type of reconnection at the hyperbolic point also changes the field line connectivity and thus leads to large-scale plasma mixing across the shear layer.  相似文献   

4.
The helicity conservation theorem is demonstrated in the case of superfluid4He. As in the case of a classical barotropic fluid, the helicity integral expresses some topological properties of vortex lines.  相似文献   

5.
A new matrix formulation of Lagrange hydrodynamic equations is proposed. Exact solutions of those equations are obtained in matrix form. It is found that precession of vortex lines around some fixed axis in space is a general property of the flows described by those solutions. Two types of fluid motion are studied. Flows of the first type have straight vortex lines, and their particle trajectories are windings on toroidal surfaces. The other flows have plane particle trajectories, and their vortex lines are arbitrarily shaped plane curves. All these motions are shown to be three-dimensional generalizations of plane Ptolemaic flows [1,2].Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 39, No. 6, pp. 783–796, June, 1996.The authors express their gratitude to the Russian Foundation for Fundamental Research for support of these investigations under Grant No. 96-01-00585 and to INTAS Foundation for support under Grant No. 93-1373.  相似文献   

6.
7.
Vortex stretching in a compressible fluid is considered. Two-dimensional (2D) and axisymmetric cases are considered separately. The flows associated with the vortices are perpendicular to the plane of the uniform straining flows. Externally-imposed density build-up near the axis leads to enhanced compactness of the vortices — “dressed" vortices (in analogy to “dressed" charged particles in a dielectric system). The compressible vortex flow solutions in the 2D as well as axisymmetric cases identify a length scale relevant for the compressible case which leads to the Kadomtsev-Petviashvili spectrum for compressible turbulence. Vortex reconnection process in a compressible fluid is shown to be possible even in the inviscid case — compressibility leads to defreezing of vortex lines in the fluid.  相似文献   

8.
We investigate experimentally the advection of a magnetic field by a flow of conducting fluid, at moderate magnetic Reynolds numbers. More specifically, we study the influence of a large scale intense vortex on an externally applied field. We show that at large scales the magnetic field lines are distorted in a way that is consistent with a scenario of magnetic field expulsion by vorticity. Measurements at small scales show that the magnetic fluctuations are also quite sensitive to the large scale vortex motion. Received 27 October 1999 and Received in final form 16 March 2000  相似文献   

9.
The inviscid limit of the stochastic Burgers equation is discussed in terms of the level surfaces of the minimising Hamilton–Jacobi function, the classical mechanical caustic and the Maxwell set and their algebraic pre-images under the classical mechanical flow map. We examine the geometry of the Maxwell set in terms of the behaviour of the pre-Maxwell set, the pre-caustic and the pre-level surfaces. In particular, contrary to the ideas of Helmholtz and Lord Kelvin, we prove that even if initially the fluid flow is irrotational, in the inviscid limit, associated with the advent of the Maxwell set a non-zero vorticity vector forms in the fluid with vortex lines on the Maxwell set. This suggests that in quite general circumstances for small viscosity there is a vortex filament structure near the Maxwell set for both deterministic and stochastic Burgers equations.   相似文献   

10.
The interaction of vortex filaments in an ideal incompressible fluid with the free surface of the latter is investigated in the canonical formalism. A Hamiltonian formulation of the equations of motion is given in terms of both canonical and noncanonical Poisson brackets. The relationship between these two approaches is analyzed. The Lagrangian of the system and the Poisson brackets are obtained in terms of vortex lines, making it possible to study the dynamics of thin vortex filaments with allowance for finite thickness of the filaments. For two-dimensional flows exact equations of motion describing the interaction of point vortices and surface waves are derived by transformation to conformal variables. Asymptotic steady-state solutions are found for a vortex moving at a velocity lower than the minimum phase velocity of surface waves. It is found that discrete coupled states of surface waves above a vortex are possible by virtue of the inhomogeneous Doppler effect. At velocities higher than the minimum phase velocity the buoyant rise of a vortex as a result of Cherenkov radiation is described in the semiclassical limit. The instability of a vortex filament against three-dimensional kink perturbations due to interaction with the “image” vortex is demonstrated. Zh. éksp. Teor. Fiz. 115, 894–919 (March 1999)  相似文献   

11.
自由汇流旋涡Ekman抽吸演化机理   总被引:2,自引:0,他引:2       下载免费PDF全文
谭大鹏  杨涛  赵军  计时鸣 《物理学报》2016,65(5):54701-054701
自由汇流旋涡形成过程中有抽吸现象发生, 是一个比较复杂的气液两相耦合过程, 其中所涉及的Ekman层耦合及演化机理具有重要的科研价值与实际意义. 针对上述问题, 提出了一种自由汇流旋涡Ekman抽吸演化机理建模与分析方法. 基于多相流体体积VOF模型与湍动能-耗散(k-ε)模型, 建立了面向汇流旋涡Ekman抽吸演化的两相动力学模型. 基于上述模型, 分析初始转动速度分量、排流量与Ekman抽吸过程的内在联系, 并揭示相关流场分布规律. 研究结果表明: 初始扰动不同, 汇流旋涡的吸气孔、抽气孔距离容器底面边界的高度保持不变; 初始扰动加强, 吸气阶段转速增加, Ekman边界层厚度及抽吸高度增加, 抽吸、贯穿阶段Ekman抽吸现象减弱; 初始扰动恒定, Ekman抽吸高度保持不变, 与排流量变化无关. 研究结果可为自由汇流旋涡形成机理方面的研究提供有益参考, 也可为冶金、化工领域的旋涡抑制控制提供技术支持.  相似文献   

12.
Fluid particle advection in the vicinity of the Föppl vortex system is considered. Due to periodic motion of vortices about the Föppl equilibrium, fluid particles within the vortex atmosphere, the fluid region with a velocity field being induced by the vortices, can move chaotic in the sense of exponential divergence of near trajectories. This chaotic motion leads to the vortex atmosphere particles to be carried away from the atmosphere to the exterior flow. In this Letter, the part of the carried away fluid particles is numerically assessed and the dynamics of the fluid release from the vortex atmosphere is demonstrated.  相似文献   

13.
The formation of a horseshoe-shaped vortex from an initial straight cylindrical vortex occurring in the viscous layer of a retarding fluid flow in a channel with a nonuniform cross section is studied experimentally. The spatial bends of the vortex filament and the effect of the ambient fluid pressure first form an arch with supports at the bottom of the channel, then a horseshoe-shaped vortex, and finally a circular vortex with the destruction of the supports.  相似文献   

14.
In isotropic macroscopic quantum systems vortex lines can be formed while in anisotropic systems also vortex sheets are possible. Based on measurements of superfluid 3He-A, we present the principles which select between these two competing forms of quantized vorticity: sheets displace lines if the frequency of the external drive exceeds a critical limit. The resulting topologically stable state consists of multiple vortex sheets and has much faster dynamics than the state with vortex lines.  相似文献   

15.
Some effects are described allowing one to observe thermodynamic phenomena on vortex lines in liquid helium. In all these effects helium ions strongly coupled to vortex lines and to thermal excitations localized on these lines are involved.  相似文献   

16.
The minimal energy configurations of hyperbolic bending vortex lines in the rotating trapped Bose-Einstein condensates are investigated by using a variational ansatz and numerical simulation. The theoretical calculation of the energy of the vortex lines as a function of the rotation frequency gives self-consistently vortex number, curvature and configuration. The numerical results show that bending is more stable than straight vortex line along the z-axis, and the vortex configuration in the xy-plane has a little expansion by increasing z.  相似文献   

17.
Li X  Shu J  Arnoldus HF 《Optics letters》2008,33(19):2269-2271
The energy flow lines (field lines of the Poynting vector) of electric dipole radiation exhibit a vortex structure in the near field when the dipole moment of the source is in circular rotation. The spatial extend of this vortex is smaller than a wavelength and may not be observable by a measurement in the near field. We show that the rotation of the field lines close to the source affects the image of the dipole in the far field, and this opens the possibility for observation of this vortex by a measurement in the far field.  相似文献   

18.
Strongly coupled dusty plasma medium is often described as a viscoelastic fluid that retains its memory. In a flowing dusty plasma medium, vortices of different sizes appear when the flow does not remain laminar. The vortices also merge to transfer energy between different scales. In the present work, we study the effect of viscoelasticity and compressibility over a localized vortex structure and multiple rotational vortices in a strongly coupled viscoelastic dusty plasma medium. In case of single rotating vortex flow, a transverse wave is generated from the localized vortex source and the evolution time of generated waves is found to be reduced due to finite viscoelasticity and compressibility of the medium. It is found that the viscoelasticity suppresses the dispersion of vorticity. In the presence of multiple vortices, we find, the vortex mergers get highly affected in the presence of memory effect of the fluid, and thus the dynamics of the medium gets completely altered compared to a non‐viscoelastic fluid. For a compressible fluid, viscoelasticity dampens the energy in the sonic waves generated in the medium. Thus a highly viscoelastic and compressible fluid, in some cases, behaves similarly to an incompressible viscoelastic fluid. The wave‐front like rings propagate in elliptical orbits keeping the footprint of the earlier position of the point‐vortex. The rings collide with each other even within the patch vortex region forming regions of high vorticity at the point of intersection and pass through each other.  相似文献   

19.
In superfluid3He-A singly and doubly quantized vortex lines can coexist in a rotating container. We measure with NMR techniques the radial distribution of the two vortex types in an array of vortex lines. The radial composition is found to depend on the procedure by which the array has been formed. The result shows that in superfluid3He the energy barriers separating different configurations of the vortex array are inpenetrably high for a metastable state to relax.  相似文献   

20.
An approximate solution to the two-dimensional incompressible fluid equations is constructed by expanding the vorticity field in a series of derivatives of a Gaussian vortex. The expansion is used to analyze the motion of a corotating Gaussian vortex pair, and the spatial rotation frequency of the vortex pair is derived directly from the fluid vorticity equation. The resulting rotation frequency includes the effects of finite vortex core size and viscosity and reduces, in the appropriate limit, to the rotation frequency of the Kirchhoff point vortex theory. The expansion is then used in the low Mach number Lighthill equation to derive the far-field acoustic pressure generated by the Gaussian vortex pair. This pressure amplitude is compared with that of a previous fully numerical simulation in which the Reynolds number is large and the vortex core size is significant compared to the vortex separation. The present analytic result for the far-field acoustic pressure is shown to be substantially more accurate than previous theoretical predictions. The given example suggests that the vorticity expansion is a useful tool for the prediction of sound generated by a general distributed vorticity field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号