首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
球磨-溶剂热诱导法合成WS2纳米棒及其摩擦性能   总被引:2,自引:0,他引:2  
采用行星式高能球磨机,将WS2与S粉末混合球磨,得到纳米片状结构的前驱体,然后添加分散剂聚乙二醇(PEG)用溶剂热诱导的方法使纳米片状前驱体发生结构转变,制备了棒状结构的WS2纳米材料。用XRD、SEM、TEM等方法对WS2纳米棒进行了形貌和结构表征,并对其作为润滑油添加剂的摩擦性能进行了初步的研究。  相似文献   

2.
WS2纳米颗粒的合成及摩擦学性能研究   总被引:4,自引:0,他引:4  
将自制的WO3纳米颗粒前驱体与S粉混合,在自制的反应装置氢气氛中,于550~750 ℃下煅烧得到二硫化钨纳米颗粒,反应中用H2代替H2S以减少对周围环境的污染。该合成路线简单且产物纯度高。用XRD、SEM、TEM和HRTEM对二硫化钨纳米结构进行了表征和分析,并将WS2纳米颗粒作为添加剂添加到N40基础油中,在MS-T3000摩擦磨损仪测试其摩擦学性能。结果显示:制备的二硫化钨颗粒平均粒径在50 nm以内,其形状为球形或类球形。WS2纳米颗粒作为普通润滑油的纳米级固体添加剂表现出了较优异的摩擦学性能。  相似文献   

3.
In this work, the tribological performance of mixed lubricant consisting of phenol and benzyl alcohol between YG8 self-mated interfaces was systematically investigated under 98 N and 1450 rpm. The results showed that with increasing concentration of phenol in the mixed lubricant, the friction coefficient initially decreases and then increases; however, anti-wear performance initially was enhanced and then weaken. As the concentration of phenol was 1.0 wt.%, the tribo-system exhibited the lowest friction coefficient and wear scar diameter. TEM, SEM and XPS techniques were employed to probe the possible tribological mechanism sliding in the mixed lubricant containing 1.0 wt.% of phenol. The phenol effectively slowed down the oxidation of the mixed lubricant, combination of friction-induced tungsten oxides and carbon quantum dots, assuring the tribo-system still in mixed lubrication condition, which made the tribo-system maintain low friction coefficient and wear.  相似文献   

4.
Cu掺杂TiO_2薄膜的摩擦学性能   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法在普通玻璃基底上制备了纯TiO2和Cu掺杂的TiO2(Cu-TiO2)纳米结构薄膜,利用X射线光电子能谱(XPS)、原子力显微镜(AFM)、粉末X射线衍射(XRD)及UMT-3摩擦磨损试验机考察了Cu掺杂量对薄膜组成、结构、表面形貌及摩擦学性能的影响.结果表明,相比于纯TiO2薄膜,Cu掺杂TiO2纳米薄膜平整、均匀,具有较好的耐磨减摩性能.Cu掺杂量的多少直接影响Cu-TiO2薄膜的减摩抗磨性能,当Cu掺杂量为5%(摩尔分数)时,Cu-TiO2膜具有最佳的耐磨寿命和最低的摩擦系数.  相似文献   

5.
A new family of thermoplastic nanocomposites based on isotactic polypropylene (iPP) and inorganic fullerene‐like tungsten disulfide (IF‐WS2) has been successfully prepared. A very efficient dispersion of IF‐WS2 material was obtained by mixing in the melted polymer without using modifiers or surfactants. The addition of IF‐WS2 nanoparticles induces a remarkable enhancement of the thermal stability of iPP, as well as an increase in the crystallization rate of the matrix when compared with pure iPP. The nucleating efficiency of IF‐WS2 solid lubricant nanoparticles on the α‐phase of iPP reaches very high values (60–70%), the highest values observed hitherto for polypropylene nanocomposites. The incorporation of IF‐WS2 has also been observed to increase the size and stability of the crystals formed. The melting behavior of the nanocomposites indicates the formation of more perfect crystals as determined by differential scanning calorimetry and time‐resolved synchrotron X‐ray scattering experiments. The new nanocomposites show an increase in the storage modulus with respect to pure iPP measured by dynamic mechanical analysis. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2309–2321, 2007  相似文献   

6.
MoS2/a-C:H multilayer film and MoS2/a-C:H composite film exhibit excellent tribological properties in vacuum, which can be used as the potential space lubricant. The radiation-protective properties of these two films in atomic oxygen (AO) are evaluated. The influences of AO radiation on structure, morphology, and tribological properties of the films were investigated. The results show that AO radiation mainly causes oxidation and increases sp2 C content in both of the films. Furthermore, the MoS2 sublayer on the surface of the multilayer film is oxidized heavily, whereas both the MoS2 and the a-C:H matrix on the surface were oxidized in the composite film. As a result of this, the multilayer film exhibits high friction coefficient and short sliding lifetime in vacuum after AO radiation. Compared with that, the composite film exhibits lower friction and longer sliding time more than 3600 seconds in vacuum, which illustrates it has a good AO radiation protection. This indicates that MoS2/a-C:H composite film is more likely to be used as a potential space lubricant.  相似文献   

7.
Quasi‐1‐D (one‐dimensional) tungsten disulfide (WS2) nanocrystal was synthesized through a two‐step hydrothermal process. Energy dispersive spectroscopy (EDS) identified that the chemical composition of the final product was WS2. The produced nanocrystal was further characterized with X‐ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The results have shown that most of the products are quasi‐1‐D nanocrystals with the width around 140 nanometers and thickness about 30 nanometers. However, the length of the majority of nanocrystals could reach 1 micron. The selected area electron diffraction (SAED) pattern indicates that the nanocrystal is of a single crystal. N2 adsorption measurement revealed that the BET specific surface area of this sample is 97 m2g?1, which indicates that the as‐prepared product has better catalyzing and friction performance.  相似文献   

8.
Borate esters have good load carrying capacity and lubricating properties. However, borate esters are susceptible to hydrolyzation, which limits their applications. To improve the hydrolysis resistance of borate esters, nitrogen-containing heterocyclic and alkanolamide were introduced into their structures. Two novel multifunctional borate esters were synthesized, and their tribological properties were evaluated in rapeseed oil. The two novel borate esters showed superior tribological properties, as well as excellent anti-rust, anti-corrosion, and anti-oxidant properties. During friction, the mixed film containing B2O3 and nitrogen-containing organic compounds were formed, iron oxide generated on the worn surface, which were important to anti-wear.  相似文献   

9.
Sb2S3 nanoparticles surface-modified with S-tetradecyl N, N-dihydroxyethyl dithiocarbamate (C14DTC-Sb2S3) have been synthesized via extraction of Sb2S3 colloidal particles from ethylene glycol into toluene in the presence of C14DTC. The obtained products were characterized by high-resolution transmission electron microscope (HRTEM) and Fourier transformation infrared (FTIR), and their tribological behaviors as an additive in liquid paraffin were investigated using a four-ball tribometer. The results show that C14DTC-Sb2S3 nanoparticles can significantly improve the friction reduction, anti-wear, and load-carrying properties of base oils. The preliminary lubrication mechanism was discussed based on the SEM and XPS investigation of the rubbed surfaces.  相似文献   

10.
Beneficial effects of fluorination on the stability of carbon nanofibre (CNF) dispersion in organic solvents as a function of time are evidenced. Because of their excellent friction properties, fluorinated CNFs (CF0.85) can be used as nanoparticles of tribo-active phase in lubrication; however, they have to be added into a matrix. We have shown that mixtures of CF0.85 are more stable than CNF solutions. Investigations by ultraviolet–visible spectroscopy have been carried out 2 h after sonication and after an ageing of 4 months. Hansen solubility theory was used, and after ageing, tribological and Raman spectroscopy experiments showed no significant modification of physicochemical properties of the CF0.85.  相似文献   

11.
Adsorption-desorption cycles were measured for methane on non-irradiated WS2, and on irradiated WS2 (which contained, in part, WS2 fullerenes and nanotubes). Both types of samples were further subdivided into three sets: one set received no further treatment, another set was heated under vacuum, and the last set was acid-treated and heated. The specific surface area was determined for each set; so was the presence or absence of a hysteresis loop in the adsorption-desorption cycles. The results of these two groups of measurements were correlated with the space available for adsorption. The implications of the results for the experimental determination of the dimensionality of gas adsorbed at the interior of nanotubes are discussed.  相似文献   

12.
为了探索生物柴油碳烟(BDS)作为水基润滑添加剂的应用, 采用热氧化法制备了热氧化处理的BDS(TO-BDS); 通过场发射透射电子显微镜、 X射线光电子能谱仪和Zeta电位仪等表征了TO-BDS的形貌、 组成和分散性, 并与BDS进行了对比; 利用球-盘往复摩擦磨损试验机、 3D激光扫描显微镜、 场发射扫描电子显微镜、 光学法接触角/界面张力仪和拉曼光谱仪考察了含TO-BDS的纯水(H2O)的摩擦磨损性能和润滑机理. 结果表明, TO-BDS表面的含氧官能团和负电荷比BDS更多, 从而导致TO-BDS在H2O中具有更好的分散性; 在H2O中添加质量分数为0.2%的TO-BDS, 可显著改善H2O的减摩抗磨性能. 这主要是因为在摩擦过程中, TO-BDS起到滚动轴承的功效, H2O+TO-BDS比H2O在摩擦副表面的润湿性能更好, 更易于形成润滑膜且TO-BDS会因摩擦力诱导剥离产生石墨片, 从而降低摩擦磨损.  相似文献   

13.
As an important antitumor drug, bleomycin (BLM) is widely used in the treatment of a variety of cancers. In addition, nucleases play a crucial role in DNA replication, recombination and repair which are associated with cancer development. Thus, the development of BLM and nuclease detection methods is of great significance in cancer therapy and related biological mechanism research. Here, a WS2 nanosheet-based turn-on fluorescent sensing platform for simple, fast and sensitive detection of BLM and nuclease was reported. WS2 nanosheet exhibits different affinity toward ssDNA with different length and excellent fluorescence quenching ability. A fluorescein (FAM)-labeled long ssDNA could be adsorbed on the surface of WS2 nanosheet and the fluorescence was therefore quenched. In the presence of BLM·Fe(II) or S1 nuclease (a ssDNA-specific nuclease which was used as a model enzyme), an irreversible scission of long ssDNA was underwent through the BLM-induced oxidation cleavage or S1 nuclease-induced enzymatic hydrolysis. Short FAM-linked oligonucleotide fragments which could not be adsorbed on the nanosheet surface were then produced, resulting in a weak fluorescence quenching after mixing WS2 nanosheets. Thus, the fluorescence signal was restored. The proposed sensor displays a wide linear range and a high sensitivity with a detection limit of 0.3 nM for BLM and 0.01 U mL−1 for S1 nuclease. It also exhibits a good performance in complex biological samples. This method not only provides a strategy for BLM or S1 nuclease assay but also offers a potential application in biomedical and clinical study.  相似文献   

14.
氟硅改性聚氨酯自组装膜的合成及性能   总被引:1,自引:0,他引:1  
以甲苯二异氰酸酯、聚酯二元醇、2,2-二羟甲基丙酸和十三氟-1-辛醇等为原料合成了氟醇封端的聚氨酯预聚体(FPU)。 通过FPU侧链含有的羧基官能团与异氰酸酯基硅烷偶联剂(Si-NCO)反应制备了含硅氧烷官能团功能性树脂(FPUSi)。 采用红外光谱(FT-IR) 对产物结构进行了表征,用TGA和水接触角等测试了自组装薄膜的表面性能。 结果表明,在N2气氛围下,FPU和FPUSi的热失重温度(T5%)均为178 ℃;硅基表面经FPUSi自组装膜修饰后,其表面水接触角达到81°。 微摩擦测试结果表明,当载荷为400 mN时,FPUSi自组装薄膜的稳定摩擦系数达到0.09。  相似文献   

15.
The tribological properties of Si3N4 ball sliding against diamond‐like carbon (DLC) films were investigated using a ball‐on‐disc tribometer under dry friction and oil lubrications, respectively. The influence of nano boron nitride particle as lubricant additive in poly‐α‐olefin (PAO) oil on the tribological properties of Si3N4/DLC films was evaluated. The microstructure of DLC films was measured by Raman spectroscopy and X‐ray photoelectron spectroscopy. The experimental results show coefficient of friction (COF) of Si3N4/DLC films was as low as 0.035 due to the formation of graphite‐like transfer films under dry friction condition. It also indicates that the tribological properties of Si3N4/DLC films were influenced significantly by the viscosity of oil and the content of nano boron nitride particle in PAO oil. COF increases with the viscosity of PAO oil increasing. Si3N4/DLC films exhibit the superlubricity behaviors (μ=0.001 and nonmeasurable wear) under PAO 6 oil with 1.0 wt% nano boron nitride particle lubrication, indicating that the improved boundary lubrication behaviors have indeed been responsible for the significantly reduced friction. Nano boron nitride additive is used as solid lubricant‐like nano scale ball bearing to the pointlike contact and a soft phase bond with the weak van der Waals interaction force on the contact surface to improve the lubrication behaviors of Si3N4/DLC films. The potential usefulness of nano boron nitride as lubricant additive in PAO oil for Si3N4/DLC films has been demonstrated under oil lubrication conditions. The present work will extend the wide application of nano particle additive and introduce a new approach to superlubricity under boundary lubrication in future technological areas. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
用四球摩擦磨损试验机考察了环烷酸混合稀土、环烷酸亚锡及它们的复配物添加在26#白油中的摩擦学性能, 并用俄歇尔电子能谱研究了磨斑表面边界膜的化学组成. 结果表明: 环烷酸亚锡和环烷酸稀土在抗磨性能和减摩性能方面均存在明显的协同效应, 其复配物具有比ZDDP更好的抗磨减摩性能, 有望作为新型的高效多功能润滑添加剂在工业实际中得到应用, 复配物在摩擦表面形成的含稀土元素和锡元素的边界润滑膜是其具有良好摩擦学性能的主要原因.  相似文献   

17.
The Ni/Mo/SBA-15 catalyst was modified by La2O3 in order to improve its thermal stability and carbon deposition resistance during the CO2 reforming of methane to syngas. The catalytic performance, thermal stability, structure, dispersion of nickel and carbon deposition of the modified and unmodified catalysts were comparatively investigated by many characterization techniques such as N2 adsorption, H2-TPR, CO2-TPD, XRD, FT-IR and SEM. It was found that the major role of La2O3 additive was to improve the pore structure and inhibit carbon deposition on the catalyst surface. The La2O3 modified Ni/Mo/SBA-15 catalyst possessed a mesoporous structure and high surface area. The high surface area of the La2O3 modified catalysts resulted in strong interaction between Ni and Mo-La, which improved the dispersion of Ni, and retarded the sintering of Ni during the CO2 reforming process. The reaction evaluation results also showed that the La2O3 modified Ni/Mo/SBA-15 catalysts exhibited high stability.  相似文献   

18.
A novel method (a rheological phase reaction) was used to synthesize WS2 nanoflakes by adding oxalic acid as a reducing reagent. High resolution electron microscopy observations revealed that the as-prepared WS2 nanoflakes had started to curve and that WS2 nanotubes were partly formed. The lithium intercalation/deintercalation behavior of as-prepared WS2 electrode was also investigated. It was found that the WS2 nanoflake electrode exhibited higher specific capacity with very good cycling stability compared to WS2 nanotube or nanoparticle electrodes. The reasons for the improved electrochemical performance of the nanoflake electrodes are also discussed.  相似文献   

19.
The unmodified and hexamethylene diisocyanate (HDI) modified TiO2 nanotubes, were used for fabricating TiO2 nanotubes (TiNTs)/polyurethane (PU) composite coating. The effects of applied load and sliding speed on the tribological behavior of the composite coating were investigated using a block-on-ring wear tester. Compared to the TiO2 nanotubes filled PU composite coating, the HDI modified TiO2 nanotubes (TiNTs-HDI) filled one had the lower friction coefficient and higher wear life under various applied loads and sliding speed. Scanning electron microscope (SEM) investigation showed that the TiNTs-HDI filled PU coating had smooth worn surface under given applied load and sliding speed, and a continuous and uniform transfer film formed on the surface of the counterpart ring, which helped to reduce the wear of the coating. The improvement in the tribological properties of TiNTs-HDI/PU composite coating might due to an improvement in interfacial adhesion between TiNTs and PU after HDI treatment. The strong interfacial coupling of the composite coating made TiNTs-HDI not easy to detach from the PU matrix, and prevented the rubbing-off of PU composite coating, accordingly improved the friction and wear properties of the composite coating.  相似文献   

20.
Organic–inorganic poly(phthalazinone ether ketone) (PPEK)/SiO2 hybrid composite thin films were prepared by the dip-coating method on pre-cleaned glass substrates. The covalent bonds between organic and inorganic phases were introduced by an in-situ O-acylation reaction of isocyanatopropyltriethoxysilane (ICPTES) with the borohydride-reduced PPEK forming a polymer bearing triethoxysilyl groups. Theses groups were subsequently hydrolyzed with tetraethoxysilane (TEOS) and allowed to form a network via a sol–gel process. The polymer hybrid composite exhibited good thermal stability and a higher glass transition temperature as compared with the pure resin. Atomic force microscope, water contact angle measurement and scanning electron microscope were used to characterize the polymer hybrid thin films. The tribological experiment showed that the films have very low friction coefficient (about 0.1) and good anti-wear properties, without failure even after sliding for 18,000 s under modest loads. The improved tribological properties of the modified substrate were attributed to good adherence of PPEK/SiO2 hybrid films on the substrate and synergy of both PPEK matrix and silica particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号