首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To the best of our knowledge, bioanalytical methods to determine rosiglitazone in human plasma reported in literature use internal standards that are not commercially available. Our purpose was to develop a simple method for the determination of rosiglitazone in plasma employing a commercially available internal standard (IS). After the addition of celecoxib (IS), plasma (0.25 mL) samples were extracted into ethyl acetate. The residue after evaporation of the organic layer was dissolved in 750 microL of mobile phase and 50 microL was injected on to HPLC. The separation was achieved using a Hichrom KR 100, 250 x 4.6 mm C(18) with a mobile phase composition potassium dihydrogen phosphate buffer (0.01 m, pH 6.5):acetonitrile:methanol (40:50:10, v/v/v). The flow-rate of the mobile phase was set at 1 mL/min. The column eluate was monitored by fluorescence detector set at an excitation wavelength of 247 nm and emission wavelength of 367 nm. Linear relationships (r(2) > 0.99) were observed between the peak area ratio rosiglitazone to IS vs rosiglitazone concentrations across the concentration range 5-1000 ng/mL. The intra-run precision (%RSD) and accuracy (%Dev) in the measurement of rosiglitazone were <+/-10.69 and <-12.35%, respectively across the QC levels (50-1000 ng/mL). The extraction efficiency was >80% for both rosiglitazone and IS from human plasma. The lower limit of quantitation of the assay was 5 ng/mL. In summary, the methodology for rosiglitazone measurement in plasma was simple, sensitive and employed a commercially available IS.  相似文献   

2.
A simple, accurate and sensitive HPLC method was developed for measuring total and unbound mycophenolic acid (MPA) in human plasma. Total MPA was extracted by protein precipitation and ultrafiltration was used to assess unbound MPA concentrations. The supernatant (20 microL) or ultrafiltrate (100 microL) was injected onto a C(18) HPLC column with a mobile phase of 0.05 m sodium phosphate buffer (pH 2.31)-acetonitrile (55:45, v/v for total MPA; 50:50 for unbound MPA) with UV detection at 254 nm. The extraction recovery was over 93% and reproducible. The assay was linear over the concentration range of 0.07-50 mg/L for total MPA and 4-1500 microg/L for unbound MPA. Intra- and inter-day assay reproducibility was less than 10%. Detection limits were 0.04 mg/L and 2 microg/L for total and unbound MPA, respectively. The assay utility was established in samples collected from five paediatric bone marrow transplant recipients who were receiving intravenous doses of mycophenolate mofetil. In these patients MPA concentrations ranged from 0.07 to 7.83 mg/L and unbound drug concentrations ranged from 2.1 to 107.5 microg/L. This method can be effectively applied to MPA pharmacokinetics in paediatric patients.  相似文献   

3.
A highly sensitive and specific LC-MS/MS method has been developed and validated for the estimation of rhein with 100 microL human plasma using celecoxib as an internal standard (IS). The API-4,000 Q-Trap LC-MS/MS was operated under multiple reaction-monitoring mode using the electrospray ionization technique. The assay procedure involved extraction of rhein and IS from human plasma with acetonitrile, which yielded consistent recoveries of 36.01 and 65.85% for rhein and IS, respectively. The total chromatographic run time was 5.0 min and the elution of rhein and IS occurred at approximately 1.60 and 3.96 min, respectively. The resolution of peaks was achieved with 0.01 m ammonium acetate (pH 6.0):acetonitrile:methanol (30:58:12, v/v) on an Inertsil ODS-3 column. The method was proved to be accurate and precise at a linearity range of 0.005-5.00 microg/mL with a correlation coefficient (r) of >or=0.995. The lower limit of quantitation was 0.005 microg/mL. The intra- and inter-day precision and accuracy values were found to be within the assay variability limits as per the FDA guidelines. Rhein was found to be stable in the battery of stability studies. The application of the assay to pre-clinical pharmacokinetic studies confirmed the utility of the assay to derive pharmacokinetic parameters.  相似文献   

4.
A specific, accurate, precise and reproducible high-performance liquid chromatography (HPLC) method was developed for the estimation of rosuvastatin (RST), a novel, synthetic and potent HMG-CoA inhibitor in rat plasma. The assay procedure involved simple liquid-liquid extraction of RST and internal standard (IS, ketoprofen) from a small plasma volume directly into acetonitrile. The organic layer was separated and evaporated under a gentle stream of nitrogen at 40 degrees C. The residue was reconstituted in the mobile phase and injected onto a Kromasil KR 100-5C18 column (4.6 x 250 mm, 5 microm). Mobile phase consisting of 0.05 m formic acid and acetonitrile (55:45, v/v) was used at a flow rate of 1.0 mL/min for the effective separation of RST and IS. The detection of the analyte peak was achieved by monitoring the eluate using a UV detector set at 240 nm. The ratio of peak area of analyte to IS was used for quantification of plasma samples. Nominal retention times of RST and IS were 8.6 and 12.5 min, respectively. The standard curve for RST was linear (r2 > 0.999) in the concentration range 0.02-10 microg/mL. Absolute recoveries of RST and IS were 85-110 and >100%, respectively, from rat plasma. The lower limit of quantification (LLOQ) of RST was 0.02 microg/mL. The inter- and intra-day precisions in the measurement of quality control (QC) samples, 0.02, 0.06, 1.6 and 8.0 microg/mL, were in the range 7.24-12.43% relative standard deviation (RSD) and 2.28-10.23% RSD, respectively. Accuracy in the measurement of QC samples was in the range 93.05-112.17% of the spiked nominal values. Both analyte and IS were stable in the battery of stability studies, viz. benchtop, autosampler and freeze-thaw cycles. RST was found to be stable for a period of 30 days on storage at -80 degrees C. The application of the assay to determine the pharmacokinetic disposition after a single oral dose to rats is described.  相似文献   

5.
张荣  刘昌辉  王宁生  宓穗卿 《色谱》2008,26(1):80-83
建立了一种快速、高效的以睾酮作为探针药物评价细胞色素P450 3A4(CYP3A4)酶活性的高效液相色谱-紫外检测方法。采用的色谱柱为Phenomenex C18柱(4.6 mm×150 mm,5 μm),梯度洗脱,流速1.0 mL/min,紫外检测波长245 nm,柱温30 ℃。睾酮与大鼠肝微粒体温孵后,过已活化好的C18固相萃取小柱,收集甲醇洗脱液,于37 ℃水浴中通N2吹干,用50%甲醇复溶后进样分析测定。研究结果表明,6β-羟基睾酮的 保留时间为11.60 min,线性范围为0.5~32 μg/mL,最低检出质量浓度为0.02 μg/mL,提取率为88.41%~92.73%,方法的回收率为99.07%~101.30%;睾酮的保留时间为19.27 min,线性范围为0.5~40 μg/mL,最低检出质量浓度为0.01 μg/mL,提取率为89.59%~92.66%,方法的回收率为96.50%~98.03%。两者的日内、日间相对标准偏差均小于10%,温孵体系中的其他内源性物质不干扰测定。该方法快速、稳定、灵敏度高,适合体外睾酮及其代谢物6β-羟基睾酮的测定,可应用于体外CYP3A4酶活性的评价及酶动力学的研究。  相似文献   

6.
HPLC-fluorescence assay for acyclovir in children   总被引:1,自引:0,他引:1  
A simple, accurate, reliable and sensitive HPLC method was developed and validated for quantitating acyclovir in human plasma. Sample (100 microL) preparation involved addition of guanosine (internal standard) and protein precipitation with 7% perchloric acid and centrifugation. Supernatant (20 microL) was injected onto a C18 HPLC column with a mobile phase of 0.05 m sodium phosphate buffer-acetonitrile (pH 2.35, 992:8, v/v) with 25 microL of 0.4 m tetrabutylammonium hydroxide titrant and fluorescence detection (excitation, 260 nm; emission, 375 nm). Analyte recovery was 101% and the assay response was linear over the acyclovir concentration range of 0.1-20 mg/L. Intra- and inter-day accuracy and precision were less than 7%. The limit of detection and limit of quantitation were 0.033 and 0.1 mg/L, respectively. In five paediatric oncology patients administered intravenous acyclovir, concentrations ranged from 0.24 to 43.65 mg/L. This method can be used to measure acyclovir concentrations in paediatric patients.  相似文献   

7.
A simple, sensitive and specific high-performance liquid chromatography method is described for simultaneous determination of rosuvastatin (RST) and gemfibrozil (GFZ) in human plasma using celecoxib as an internal standard (IS). The assay procedure involved extraction of RST, GFZ and IS from plasma into acetonitrile. Following separation and evaporation of the organic layer the residue was reconstituted in the mobile phase and injected onto an X-Terra C(18) column (4.6 x 150 mm, 5.0 microm). The chromatographic run time was less than 20 min using flow gradient (0.0-1.60 mL/min) with a mobile phase consisting of 0.01 M ammonium acetate:acetonitrile:methanol (50:40:10, v/v/v) and UV detection at 275 nm. Nominal retention times of RST, GFZ and IS were 6.7, 13.9 and 16.4 min, respectively. Absolute recovery of both analytes and IS was greater than 90%. The lower limit of quantification (LLOQ) of RST and GFZ was 0.03 and 0.30 microg/mL, respectively. Linearity was excellent (r(2) = 0.999) in the 0.03-10 microg/mL and 0.3-100 microg/mL ranges for RST and GFZ, respectively. The inter- and intra-day precisions in the measurement of RST quality control (QC) samples 0.03, 0.09, 2.50 and 8.00 microg/mL were in the range 2.37-9.78% relative standard deviation (RSD) and 0.92-10.08% RSD, respectively. Similarly, the inter- and intra-day precisions in the measurement of GFZ quality control (QC) samples 0.30, 0.90, 25.0 and 80.0 microg/mL were in the ranges 2.79-6.27 and 0.96-9.69% RSD, respectively. Accuracies in the measurement of QC samples for RST and GFZ were in the range 85.43-107.23 and 84.98-102.35% respectively, of the nominal values. RST and GFZ were stable in the array of stability studies viz., bench-top, auto-sampler and freeze-thaw cycles. Stability of RST and GFZ was established for 1 month at -80C. The application of the assay in an oral pharmacokinetic study in rats co-administered with RST and GFZ is described.  相似文献   

8.
A specific, accurate, precise and reproducible high performance liquid chromatography (HPLC) method was developed and validated for the simultaneous quantitation of etoricoxib, salicylic acid, valdecoxib, ketoprofen, nimesulide and celecoxib in human plasma. The method employed a simple liquid-liquid extraction of etoricoxib, salicylic acid, valdecoxib, ketoprofen, nimesulide and celecoxib and internal standard (IS, DRF-4367) from human plasma (500 microL) into acetonitirile. The organic layer was separated and evaporated under a gentle stream of nitrogen at 40 degrees C. The residue was reconstituted in the mobile phase and injected onto a Kromasil KR 100-5C18 column (4.6 x 250 mm, 5 microm). The chromatographic separation was achieved by gradient elution consisting of 0.05 M formic acid (pH 3)-acetonitrile-methanol-water at a flow rate of 1.0 mL/min. The eluate was monitored using an ultraviolet (UV) detector set at 235 nm. The ratio of peak area of each analyte to IS was used for quantification of plasma samples. Nominal retention times of etoricoxib, salicylic acid, valdecoxib, ketoprofen, nimesulide, IS and celecoxib were 15.63, 17.20, 21.66, 24.95, 26.27, 30.24 and 32.22 min, respectively. The standard curve for etoricoxib, salicylic acid, valdecoxib, ketoprofen and celecoxib was linear (r2 > 0.999) in the concentration range 0.1-50 microg/mL and for nimesulide (r2 > 0.999) in the concentration range 0.5-50 microg/mL. Absolute recovery was >83% from human plasma for all the analytes and IS. The lower limit of quantification (LLOQ) of nimesulide was 0.5 microg/mL and for etoricoxib, salicylic acid, valdecoxib, ketoprofen and celecoxib the LLOQ was 0.1 microg/mL. The inter- and intra-day precisions in the measurement of QC samples, 0.1, 0.3, 15.0 and 40.0 microg/mL (for all analytes except nimesulide), were in the range 2.29-9.37% relative standard deviation (RSD) and 0.69-10.28% RSD, respectively. For nimesulide the inter- and intra-day precisions in the measurement of quality control (QC) samples, 0.5, 1.5, 15.0 and 40.0 microg/mL, were in the range 3.21-7.37% RSD and 0.97-7.06% RSD, respectively. Accuracy in the measurement of QC samples for all analytes was in the range 91.03-106.38% of the nominal values. All analytes including IS were stable in the battery of stability studies, viz. bench top, autosampler and freeze-thaw cycles. Stability of all analytes was established for 21 days at -20 degrees C. The application of the assay in an oral pharmacokinetic study in rats co-administered with celecoxib and valdecoxib is described.  相似文献   

9.
张丹  曾经泽  边巴仓决  蒋学华 《色谱》1997,15(6):515-517
采用ODS柱,甲醇-稀磷酸溶液(7624)为流动相,260nm为检测波长,建立了测定血浆中吲哚美辛浓度的高效液相色谱法,并测定了吲哚美辛控释胶囊炎痛康的血药浓度。结果表明,血浆中吲哚美辛浓度在0.125~5.0mg/L范围内线性关系良好(r=0.9996),检测限62.5μg/L(S/N=31),平均回收率为100.4%,日内和日间RSD均小于5%。11位受试者单剂量口服炎痛康后的相对生物利用度为102.38%。  相似文献   

10.
The current study aims to develop a specific and sensitive LC-MS/MS method for determination of bis(7)-tacrine (B7T) in rat plasma. A 100 microL plasma sample was extracted with ethyl acetate. B7T and the internal standard (IS), pimozide, in the samples were then analyzed with LC-MS/MS in positive electrospray ionization condition. Chromatographic separation of B7T and IS was achieved in a C(18) reversed-phase HPLC column (150 x 2.1 mm i.d.) by isocratic elution with a mobile phase consisting of 0.05% formic acid in water and acetonitrile (1:1, v/v) at a flow rate of 0.35 mL/min. Multiple-reaction monitoring (MRM) mode was employed to measure the ion transitions: m/z 247 to 197 for B7T and m/z 462 to m/z 328 for IS, respectively. The method was linear over the studied ranges of 100-5000 and 10-100 ng/mL. The intra-day and inter-day variations of the analysis were less than 6.8% with standard errors less than 9.0%. The detection limit of B7T in rat plasma was 1 ng/mL. The developed method was successfully applied to the pharmacokinetic study of B7T after intravenous administration of 1 mg/kg B7T and further proved to be readily utilized for determination of B7T in rat plasma samples.  相似文献   

11.
A rapid, sensitive, and simple ultra-performance liquid chromatography-tandem mass spectrometry (UPLC/MS/MS) method for the determination of udenafil and its active metabolite, DA-8164, in human plasma and urine using sildenafil as an internal standard (IS) was developed and validated. Udenafil, DA-8164 and IS from a 100 microL aliquot of biological samples were extracted by protein precipitation using acetonitrile. Chromatographic separation was carried on an Acquity UPLC BEH C(18) column (50 x 2.1 mm, i.d., 1.7 microm) with an isocratic mobile phase consisting of acetonitrile and containing 0.1% formic acid (75:25, v/v) at flow rate of 0.4 mL/min, and total run time was within 1 min. Detection and quantification was performed by the mass spectrometer using multiple reaction-monitoring mode at m/z 517 --> 283 for udenafil, m/z 406 --> 364 for DA-8164 and m/z 475 --> 100 for IS. The assay was linear over a concentration range of 1-600 ng/mL with a lower limit of quantification of 1 ng/mL in both human plasma and urine. The coefficient of variation of this assay precision was less than 13.7%, and the accuracy exceeded 92.0%. This method was successfully applied for pharmacokinetic study after oral administration of udenafil 100 mg to healthy Korean male volunteers.  相似文献   

12.
A direct plasma injection liquid chromatographic method has been developed for the determination of a new triazole antifungal agent, voriconazole, using an internal surface reversed phase column. Therapeutic drug monitoring of voriconazole is relevant for patient management, especially in the case of drug-drug interaction. The method is easy to perform and requires 10 microL of a plasma sample. The chromatographic run time is less than 9 min using a mobile phase of 17:83 v/v acetonitrile-potassium dihydrogen phosphate buffer, 100 mM, pH 6.0 and UV detection at 255 nm. The fl ow rate was 1 microL/min. A linear response was observed over the concentration range 0.5-10 microg/mL (r2 = 0.977). A good accuracy (bias < or = 7.5%) was achieved for all quality controls, with intra-day and inter-day variation coefficients inferior to 6.7%. The lower limit of quantitation was 0.2 microg/mL, without interference of endogenous components. The stability of voriconazole in plasma stored at different temperatures was checked. Finally, the possibility of direct injection of plasma samples into the column permits a reduction in reagent consumption and in analytical steps, and hence in analytical error.  相似文献   

13.
For pharmacokinetic and toxicokinetic purpose a simple HPLC-UV method has been developed and validated for the estimation of DRF-4848, a novel COX-2 inhibitor in rat plasma. A liquid-liquid extraction was used to extract DRF-4848 and internal standard (IS, DRF-4367) from rat plasma. The analysis was performed on a C(18) column with UV detection at 285 nm. The isocratic mobile phase, 0.01 M potassium dihydrogen ortho phosphate (pH 3.2) and acetonitrile (50:50, v/v) was run at a flow rate of 1 mL/min. The retention times of DRF-4848 and IS were 6.8 and 11.2 min, respectively. Absolute recovery for analyte and IS was >80% from rat plasma. A linear response was observed over a concentration range 0.1-20 microg/mL. The lower limit of quantification (LLOQ) of DRF-4848 was 0.1 microg/mL. The inter- and intra-day precisions in the measurement of quality control (QC) samples, 0.1, 0.3, 8.0 and 15.0 microg/mL, were in the range 1.74-8.70% relative standard deviation (RSD) and 0.75-8.43% RSD, respectively. Accuracy in the measurement of QC samples was in the range 93.29-116.51% of the nominal values. Analyte and IS were stable in the battery of stability studies viz., benchtop, autosampler, long-term and freeze/thaw cycles.  相似文献   

14.
超高效液相色谱-串联质谱法测定兔血浆中的丝裂霉素C   总被引:1,自引:0,他引:1  
Tang Y  Zhang S  Li X  Sun X  Wen N  Yu M  Peng L  Li J  Li Z  Li B 《色谱》2012,30(2):154-159
建立了采用超高效液相色谱-串联质谱测定兔血浆中丝裂霉素C的方法。以兔空白血浆为基质,通过添加标准溶液的方法配制含丝裂霉素C和内标物曲安奈德的样品,选用乙酸乙酯为提取溶剂,液-液萃取法处理血浆样品。采用Hypersil Gold C18分析柱(50 mm×2.1 mm, 1.9 μm),流动相为甲醇-0.1%甲酸水溶液(90:10, v/v),等度洗脱,流速0.2 mL/min,柱温35 ℃,在3 min内实现了快速分离。采用电喷雾正离子(ESI+)模式电离,选择反应监测(SRM)模式检测,以曲安奈德作为内标物进行定量。用于监测的定量离子对分别为丝裂霉素C m/z 335.2→242.2和曲安奈德m/z 435.2→397.3/415.2,用基质匹配标准溶液法进行定量。结果表明: 兔血浆中丝裂霉素C的质量浓度在1~1000 μg/L范围内线性关系良好(r=0.9978,权重系数(weighting): 1/x2);血浆中丝裂霉素C的检出限(信噪比为3)为0.2 μg/L;其平均回收率为85%~ 115%;日内及日间的相对标准偏差(RSDs)均小于15%,满足生物样品检测的要求。该方法可用于兔气管外壁给药后的血浆样品中丝裂霉素C的检测。本方法选择性强、灵敏度高、操作简便快速、重现性好,适用于丝裂霉素C药代动力学等方面的研究。  相似文献   

15.
A specific, accurate, precise and reproducible high-performance liquid chromatography (HPLC) method was developed for the estimation of DRF-4367, a novel cyclooxygenase-2 inhibitor in rat plasma. The assay procedure involved simple liquid/liquid extraction of DRF-4367 and internal standard (IS, celecoxib) from plasma into dichloromethane. The organic layer was separated and evaporated under a gentle stream of nitrogen at 40 degrees C. The residue was reconstituted in the mobile phase and injected onto a Kromasil KR 100-5C(18) column (4.6 x 250 mm, 5 microm). The mobile phase consisting of 0.01 M potassium dihydrogen ortho-phosphate (pH 3.2) and acetonitrile (40:60, v/v) was used at a flow rate of 1.0 mL/min. The eluate was monitored using an UV detector set at 247 nm. The ratio of peak area of analyte to IS was used for quantification of plasma samples. Nominal retention times of DRF-4367 and IS were 6.6 and 11.2 min, respectively. The standard curve for DRF-4367 was linear (r(2) > 0.999) in the concentration range 0.1-20 micro g/mL. Absolute recovery was >86% from rat plasma for both analyte and IS. The lower limit of quantification of DRF-4367 was 0.1 micro g/mL. The inter- and intra-day precisions in the measurement of quality control samples, 0.1, 0.3, 8.0 and 15.0 microg/mL, were in the range 6.93-9.34% relative standard deviation (RSD) and 0.48-6.59% RSD, respectively. Accuracy in the measurement of QC samples was in the range 91.24-109.36% of the nominal values. Analyte and IS were stable in the battery of stability studies, viz. benchtop, autosampler and freeze-thaw cycles. Stability of DRF-4367 was established for 1 month at -80 degrees C. The application of the assay to a pharmacokinetic study in rats is described.  相似文献   

16.
A highly sensitive and specific LC-MS/MS method has been developed and validated for the estimation of torcetrapib (TTB) with 100 microL hamster/dog plasma using DRL-16126 as an internal standard (IS). The API-4000 Q Trap LC-MS/MS was operated under multiple-reaction monitoring mode using the electrospray ionization technique. The assay procedure involved extraction of TTB and IS from plasma with acetonitrile, which yielded consistent recoveries of 65.73 and 94.01% for TTB and 79.68 and 90.70% for IS in hamster and dog plasma, respectively. The total chromatographic run time was 3.0 min and the elution of TTB and IS occurred at approximately 2.25 and 2.20 min, respectively. The resolution of peaks was achieved with 0.01 m ammonium acetate:acetonitrile (15:85, v/v) at a flow rate of 0.40 mL/min on an Inertsil ODS-3 column. The method was proved to be accurate and precise at linearity range of 1.00-200 ng/mL with a correlation coefficient (r) of > or = 0.993. The method was rugged with 1.00 ng/mL as the lower limit of quantitation. TTB was stable in the battery of stability studies. The application of the assay to preclinical pharmacokinetic studies confirmed the utility of the assay to derive hamster/dog pharmacokinetic parameters.  相似文献   

17.
The development and validation of a high-performance liquid chromatography (HPLC) method for the simultaneous determination of itraconazole and its metabolite, hydroxyitraconazole, in human plasma is described. The method involved liquid-phase extraction of itraconazole and hydroxyitraconazole using a hexane-dichloromethane (70:30) mixture, after addition of loratidine as an internal standard (IS). Separation was achieved with a reversed-phase C18 column (250 mm x 4.6 mm) employing fluorescence detection (excitation: 264 nm, emission: 380 nm). The mobile phase consisted of [0.01% triethylamine solution adjusted to pH 2.8 with orthophosphoric acid-acetonitrile (46:54)]-isopropanol (90:10, v/v) at a flow rate of 1.0 ml/min. For both the drug and metabolite, the standard curve was linear from 5.0 to 500 ng/ml with goodness of fit (r2) greater than 0.98 observed with four precision and accuracy batches during validation. An observed recovery was more than 70% for drug, metabolite and internal standard. The applicability of this method to pharmacokinetic studies was established after successful application during 35 subjects bioavailibity study. The method was found to be precise, accurate and specific during the study.  相似文献   

18.
In this work, a simple isocratic reversed-phase HPLC method for determination of alpha-tocopherol in human erythrocytes has been developed and validated. After separation of plasma the erythrocytes were washed three times with 0.9% sodium chloride containing 0.01% butylated hydroxytoluene (BHT) as antioxidant and then were diluted 1:1 (v/v) with the same solution. In the liquid-liquid extraction (LLE) procedure, 2500 microL of n-hexane was added to 500 microL of erythrocytes. After 2 min this mixture was deproteinized by addition of cool ethanol (500 microL, 5 min) denatured with 5% methanol containing alpha-tocopherol acetate (20 micromol L(-1)), as internal standard, and then extracted for 5 min by vortex mixing. After centrifugation (10 min, 1600xg) an aliquot (2000 microL) of the clean extract was separated and evaporated under nitrogen. The residue was dissolved in 400 microL methanol and analysed by reversed-phase HPLC on a 4.6 mmx150 mm, 5 microm Pecosphere C18 column; the mobile phase was 100% methanol, flow rate 1.2 mL min(-1). The volume injected was 100 microL and detection was by diode-array detector at a wavelength of 295 nm. The extraction recovery of alpha-tocopherol from human erythrocytes was 100.0+/-2.0%. The detection limit was 0.1 micromol L(-1) and a linear calibration plot was obtained in the concentration range 0.5-20.0 micromol L(-1). Within determination precision was 5.2% RSD (n=10), between determination precision was 6.1% RSD (n=10). The method was applied successfully in a clinical study of patients with acute pancreatitis and for determination of the reference values in the healthy Czech population.  相似文献   

19.
A high-throughput ultrasensitive analytical method based on liquid chromatography with positive ion atmospheric pressure chemical ionization (APCI) coupled to tandem mass spectrometric detection (LC/MS/MS) was developed for the determination of all-trans-4-oxo-retinoic acid (at4oxoRA), 13-cis-4-oxo-retinoic acid (13c4oxoRA), 13-cis-retinoic acid (13cRA), all-trans-retinoic acid (atRA) and all-trans-retinol (atROH) in human plasma. A stable isotope of atRA was used as internal standard (IS). The analytes and IS were isolated from 100 microL plasma by acetonitrile mono-phase extraction (MPE) performed in black 96-well microtiterplates. A 100 microL injection was focused on-column and chromatographed on an Agilent ZORBAX SB-C18 rapid-resolution high-throughput (RRHT) column with 1.8-microm particles (4.6 mmx50 mm) maintained at 60 degrees C. The initial mobile phase composition was acetonitrile/water/formic acid (10:90:0.1, v/v/v) delivered at 1.8 mL/min. Elution was accomplished by a fast gradient to acetonitrile/methanol/formic acid (90:10:0.1, v/v/v). The method had a chromatographic total run time of 7 min. An Applied Biosystems 4000 Q TRAP linear tandem mass spectrometer equipped with a heated nebulizer (APCI) ionization source was operated in multiple reaction monitoring (MRM) mode with the precursor-to-product ion transitions m/z 315.4-->297 (4-oxo-retinoic acids), 301.2-->205 (retinoic acids), 305.0-->209 (IS) and 269.2-->93 (retinol) used for quantification. The assay was fully validated and found to have acceptable accuracy, precision, linearity, sensitivity and selectivity. The mean extraction recoveries from spiked plasma samples were 80-105% for the various retinoids at three different levels. The intra-day accuracy of the assay was within 8% of nominal and intra-day precision was better than 8% coefficient of variance (CV) for retinoic acids. Inter-day precision results for quality control samples run over a 12-day period alongside clinical samples showed mean precision better than 12.5% CV. The limit of quantification was in the range of 0.1-0.2 ng/mL and the mass limit of detection (mLOD) was in the range 1-4 pg on column for the retinoic acids. The assay has been successfully applied to the analysis of 1700 plasma samples.  相似文献   

20.
A reversed-phase high-performance liquid chromatographic (RP-HPLC) method was described for the determination of chlorogenic acid (CGA) in rat plasma using protocatechuic acid as internal standard (IS). CGA in plasma was extracted with acetonitrile, which also acted as deproteinization agent. Chromatographic separation was performed on a Kromasil C18 column with methanol-0.2 m acetic acid (pH 3.0, 25:75, v/v) as mobile phase at a flow-rate of 1.0 mL/min with an operating temperature of 30 degrees C and UV detection at 300 nm. The standard curve was found to be linear over the concentration ranges of 0.4-2.5 microg/mL and 2.5-40 microg/mL, and the limit of quantification (LOQ) was 0.4 microg/mL. The analytical precision and accuracy were validated by relative standard deviation (RSD) and relative error, which were in ranges 3.14-10.78% and -2.20-5.00%, respectively. The average recovery of CGA was 87.59%. The method was successfully applied to the pharmacokinetic study of CGA in Yin-Huang granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号