首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In situ high temperature nuclear magnetic resonance in molten fluoride mixtures gives some structural picture of the complexes existing in the melt, i.e. of their nature and relative proportion. Thanks to the development of a laser heating system associated with a close crucible in boron nitride, we can describe experimentally the evolution of these complexes from the anions and the cations point of view. By 19F NMR, we have shown the existence of three kinds of fluorine atoms depending on the composition: free fluorine like in pure LiF (non-bonded), bridging fluorine in melts rich in LnF3 in addition with terminal fluorine singly bonded to one rare earth. Data obtained by NMR spectroscopy are also combined with EXAFS measurements, again thanks to a specific development of the sample holder adapted with molten fluorides and high temperature. This study is a part of our systematic investigation of the different Alk-LnF3 systems by NMR and EXAFS spectroscopy.  相似文献   

2.
The13C and19F NMR spectra ofZ- andE-isomers of β-X-substituted α,β-difluorostyrenes (X=F, Cl, CpFe(CO)2, Re(CO)5, Re2(CO)9Na) were studied. Direct and long-range (across 1–5 bonds) spin-spin coupling constants and the (13C−12C) isotope shifts in the19F NMR spectra were determined. The study of the13C satellites in the19F NMR spectra of substituted difluorostyrenes permitted assignment of the13C NMR signals of the vinylic carbon atoms. Similarly, the signals in19F NMR spectra were assigned based on coupling constants of fluorine withipso-carbon. These assignments were found to be in good agreement with the data available from the literature (X=F, Cl). The developed approach was applied to the elucidation of the structure ofZ−PhCF=CClFe(CO)2Cp. Translated fromIzvestiya Akademii Nauk, Seriya Khimicheskaya. No. 8, pp. 1575–1579, August, 1998.  相似文献   

3.
Half-lives and fluorine atom shifts of stabilized 1-fluoro-1-lithioethenes bearing hydrogen, fluorine, phenyl, and/or dimethylphenylsilyl groups in the β-positions have been determined by a low-temperature 19F NMR spectroscopy. Some 1-fluoro-1-lithioethenes displayed an exceptionally low value of the trans-3JFF coupling constant. Stereoselectivity of carbenoid formation, as well as an effect of configuration on the stability is discussed.  相似文献   

4.
The C-F?M+ interaction in anionic σ-(α-fluorovinyl)rhenium oxycarbene complexes, [RCFCFReC(O)R′(CO)4]M (1-6), M = Na, Li, K is studied by 19F NMR in THF and Et2O. The coordination of α-F to M+ results in an upfield shift of the corresponding 19F NMR signal and a decrease of 1JCF. The maximum shift is found for the Li salt of complex 4 in Et2O (Δδ = 36.4 ppm), in which case a 7Li-19F spin-spin coupling is also observed (JLiF = 40 Hz). The ΔE of C-F?M+ interaction and its effect on 19F shielding was further studied by DFT calculations using β-fluoroenolates as models, which confirmed a strong impact of CF-bond environment on the coordination ability of fluorine in these F,O-chelates. A compound with a β-fluoroenolate backbone but without rhenium, o-(α-fluorovinyl)phenolate 12, was prepared and studied by 19F NMR, and similarly showed indications of C-F?M+ interaction in THF solution. It is concluded that the donor ability of fluorine in the studied system is enhanced because of the conjugation of α-fluorovinyl group with the enolate π-system and back donation from the transition metal.  相似文献   

5.
The synthesis and study (single crystal X-ray diffraction, thermogravimetry, IR- and NMR-spectroscopy) of a novel fluorozirconate LiK10Zr6F35·2H2O was performed. The structure of the compound is built from infinite chains [Zr6F35]11−, in which Zr-polyhedra are linked to each other through common edges and vertices. The chains are surrounded by K and Li cations and H2O molecules. The compound dehydration occurs in the temperature range 453–543 K with maximal rate at 528 K. It was established that zirconium polyhedra chain fragments underwent reorientational motion starting to influence 19F NMR spectra at temperatures higher than 270 and 180 K in LiK10Zr6F35·2H2O and LiK10Zr6F35, respectively. Above 450–420 K all fluorine sites in both samples participate in fluorine translational diffusion by at least two diffusion paths. Isotropic 19F NMR chemical shifts from different site types were detected by MAS NMR in the range 125–171 ppm.  相似文献   

6.
The goal of this study was to establish the relationship between the 19F NMR line broadening and the varying distance between the 19F nucleus and copper(II) ion, with the aim of gathering data that can be used to interpret 19F NMR spectra of subsequent fluorine-labeled, copper-binding proteins. Fluorinated alkyl and aryl copper(II) carboxylates were synthesized from fluorinated carboxylic acids and Cu(OH)2. The copper(II) carboxylates were characterized using 19F NMR, IR, and single crystal X-ray diffraction. In the alkyl carboxylate compounds, the line broadening and chemical shift lessened with increased distance between the fluorine atom and the copper ions; however, in the aryl carboxylate derivatives, increased distance was not a factor in the amount of line broadening or change in chemical shift between the acid and metal salt. The compound, bis(3-(trifluoromethyl)butyrate) copper(II) (5) was found to possess the optimum combination of decreased line broadening and increased chemical shift sensitivity in 19F NMR. The crystal structures obtained for compounds 1, 2, 4, and 6 were analogous to previous copper(II) carboxylate complexes, though it is noted that compound 6, bis(5,5,5-trifluoropentanoate) copper(II) assumes a tetrameric structure lacking apical ligands, and thus enables the formation of an extended network of near-neighbor copper(II) ions.  相似文献   

7.
High resolution13C NMR spectra of a series of -trifluoromethyl-substituted polychloropyridines were studied. Long-range13C—19F NMR spin-spin coupling through four and five bonds involving carbon atoms of the pyridine ring and the fluorine atom of the CF3 group was found.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1973–1974, October, 1995.  相似文献   

8.
A family of fluorinated gemini surfactants derived from perfluoropinacol has been synthesized as novel 19F magnetic resonance imaging (19F MRI) agents. These fluorinated surfactants with 12 symmetric fluorine atoms and one singlet 19F MR peak can be conveniently prepared from perfluoropinacol and oligo(ethylene glycols) on multi-gram scales. Solubility, hydrophilicity (log P), and critical micelle concentration (CMC) measurements of these fluorinated surfactants indicated that high aqueous solubility can be achieved by introducing oligo(ethylene glycols) with appropriate length into perfluoropinacol, i.e., manipulating the fluorine content (F%). One of these fluorinated surfactants with high aqueous solubility and excellent 19F MR properties has been identified by 19F MRI phantom experiments as a promising 19F MRI agent.  相似文献   

9.
Molecular structure, ionic mobility and phase transitions in six- and seven-coordinated ammonium oxofluoroniobates (NH4)2NbOF5 and (NH4)3NbOF6 were studied by 19F, 1H NMR and DFT calculations. Equatorial fluorine atoms (Feq) in [NbOF5]2− and [NbOF6]3− are characterized by high 19F NMR chemical shifts while axial fluorine atoms (Fax) have those essentially lower. The high-temperature ionic mobility in (NH4)2NbOF5 does not stimulate the ligand exchange Feq ↔ Fax, whereas it is observed in (NH4)3NbOF6 as pseudorotation typical for seven-coordinated polyhedra. The transformation of pentagonal bipyramidal structure (BP) of [NbOF6]3− into capped trigonal prismatic (CTP) one takes place during the phase transition (PT) at 260 K. The PT of order-disorder type in (NH4)2NbOF5 is accompanied by transition of anionic sublattice to a rigid state. The 19F and 1H NMR data corroborate the independent motions of NH4 groups and anionic polyhedra in (NH4)2NbOF5 while they are coordinated in (NH4)3NbOF6.  相似文献   

10.
The preparation and characterization of a series of octahedral complexes [SnF4L2] (L = (Me2N)3PO (1), L = (R2N)2P(O)F; R = Me (2); Et (3) or L = R2NP(O)F2; R = Me (4); Et (5)) are described. These new adducts have been characterised by multinuclear (19F, 31P and 119Sn) NMR, IR spectroscopy and elemental analysis. The NMR data particularly the 19F NMR spectra showed that the complexes exist in solution as mixtures of cis and trans isomers. The solution behaviour of the complexes studied by variable temperature NMR in the presence of excess ligand indicated that, unlike in the SnCl4 analogues, the ligand exchange at room temperature is slow for 13 and fast only for 4 and 5. The metal–ligand exchange barriers in [SnF4L2] and [SnCl4L2] systems were estimated and compared. The results indicate that in addition to the difference in the Lewis acidity between SnF4 and SnCl4 the nature of the substituents (fluorine atoms) on the phosphorus atom of the ligand can contribute considerably to the lability of the complex obtained.  相似文献   

11.
A complex mixture of fluoro-polyphosphates (FPPs) and polyphosphates was prepared by heating a mixture of NaF and sodium tripolyphosphate (STPP) at 600 °C in nitrogen atmosphere. Two-dimensional 31P-19F heteronuclear correlation spectroscopy (HETCOR) NMR was developed in identifying the atomic connection between F and P in the mixed FPPs. 19F, 31P and 31P-31P correlation spectroscopy (COSY) NMR methods were employed to identify the components of the mixture and measure the chain length of each FPP ingredient. NMR results clearly demonstrated that the mixture contains four kinds of fluoro-phosphates with different chain length of polyphosphate, which are monofluoro-phosphate (MFP), monofluoro-dipolyphosphate (MFDPP), monofluoro-tripolyphosphate (MFTPP) and difluoro-tripolyphosphate (DFTPP). Other phosphates and polyphosphates also were found in the mixture.  相似文献   

12.
The absence of fluorine from most biomolecules renders it an excellent probe for NMR spectroscopy to monitor inhibitor–protein interactions. However, predicting the binding mode of a fluorinated ligand from a chemical shift (or vice versa) has been challenging due to the high electron density of the fluorine atom. Nonetheless, reliable 19F chemical-shift predictions to deduce ligand-binding modes hold great potential for in silico drug design. Herein, we present a systematic QM/MM study to predict the 19F NMR chemical shifts of a covalently bound fluorinated inhibitor to the essential oxidoreductase tryparedoxin (Tpx) from African trypanosomes, the causative agent of African sleeping sickness. We include many protein–inhibitor conformations as well as monomeric and dimeric inhibitor–protein complexes, thus rendering it the largest computational study on chemical shifts of 19F nuclei in a biological context to date. Our predicted shifts agree well with those obtained experimentally and pave the way for future work in this area.  相似文献   

13.
Jiang ZX  Yu YB 《Tetrahedron》2007,63(19):3982-3988
A new surfactant design principle, based on concepts borrowed from protein science, is proposed. Using this principle, a class of highly branched and spherically symmetric fluorinated oils and amphiles has been designed and synthesized, for potential applications in the construction of fluorocarbon nanoparticles. The Mitsunobu reaction was employed as the key step for introducing three perfluoro-tert-butoxyl groups into pentaerythritol derivatives with excellent yields and extremely simple isolation procedures. Due to the symmetric arrangement of the fluorine atoms, each fluorinated oil or amphile molecule gives one sharp singlet 19F NMR signal.  相似文献   

14.
The absence of fluorine from most biomolecules renders it an excellent probe for NMR spectroscopy to monitor inhibitor–protein interactions. However, predicting the binding mode of a fluorinated ligand from a chemical shift (or vice versa) has been challenging due to the high electron density of the fluorine atom. Nonetheless, reliable 19F chemical‐shift predictions to deduce ligand‐binding modes hold great potential for in silico drug design. Herein, we present a systematic QM/MM study to predict the 19F NMR chemical shifts of a covalently bound fluorinated inhibitor to the essential oxidoreductase tryparedoxin (Tpx) from African trypanosomes, the causative agent of African sleeping sickness. We include many protein–inhibitor conformations as well as monomeric and dimeric inhibitor–protein complexes, thus rendering it the largest computational study on chemical shifts of 19F nuclei in a biological context to date. Our predicted shifts agree well with those obtained experimentally and pave the way for future work in this area.  相似文献   

15.
The interaction of a non-steroidal anti-inflammatory drug, niflumic acid (NFA), with human serum albumin (HSA) has been investigated by 19F nuclear magnetic resonance (NMR) spectroscopy. A 19F NMR spectrum of NFA in a buffered (pH 7.4) solution of NaCl (0.1 mol L−1) contained a single sharp signal of its CF3 group 14.33 ppm from the internal reference 2,2,2-trifluoroethanol. Addition of 0.6 mmol L−1 HSA to the NFA buffer solution caused splitting of the CF3 signal into two broadened signals, shifted to the lower fields of 14.56 and 15.06 ppm, with an approximate intensity ratio of 1:3. Denaturation of HSA by addition of 3.0 mol L−1 guanidine hydrochloride (GU) restored a single sharp signal of CF3 at 14.38 ppm, indicating complete liberation of NFA from HSA as a result of its denaturation. These results suggest that the binding is reversible and occurs in at least two HSA regions. Competitive 19F NMR experiments using warfarin, dansyl-l-asparagine, and benzocaine (site I ligands), and l-tryptophan and ibuprofen (site II ligands) revealed that NFA binds to site I at two different regions, Ia and Ib, in the ratio 1:3. By use of 19F NMR with NFA as an 19F NMR probe the nonfluorinated site I-binding drugs sulfobromophthalein and iophenoxic acid were also found to bind sites Ia and Ib, respectively. These results illustrate the usefulness and convenience of 19F NMR for investigation of the HSA binding of both fluorinated and nonfluorinated drugs.  相似文献   

16.
Fluorine chemistry has taken a pivotal role in chemical reaction discovery, drug development, and chemical biology. NMR spectroscopy, arguably the most important technique for the characterization of fluorinated compounds, is rife with highly inconsistent referencing of fluorine NMR chemical shifts, producing deviations larger than 1 ppm. Herein, we provide unprecedented evidence that both spectrometer design and the current unified scale system underpinning the calibration of heteronuclear NMR spectra have unintentionally led to widespread variation in the standardization of 19F NMR spectral data. We demonstrate that internal referencing provides the most robust, practical, and reproducible method whereby chemical shifts can be consistently measured and confirmed between institutions to less than 30 ppb deviation. Finally, we provide a comprehensive table of appropriately calibrated chemical shifts of reference compounds that will serve to calibrate 19F spectra correctly.  相似文献   

17.
2-(1-Alkoxyimino-2,2,2-trifluoroethyl)-5-trimethylsilylfurans were synthesized by the condensation of 2-(trifluoroacetyl)-5-trimethylsilylfuran with alkoxyamines. According to 1H and 19F NMR spectroscopic data, the alkoxyimino group in the E-isomers descreens the H-3 and H-4 protons of the furan ring more strongly than in the Z-isomers, shifting their signals downfield. The fluorine atoms of the α-trifluoromethyl group in the Z-isomer are characterized by a downfield shift in relation to the E-isomer. __________ Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 6, pp. 834–838, June, 2005.  相似文献   

18.
As model reactions for the introduction of [18F]fluorine into aromatic amino acids, the replacement of NO2 by [18F]fluoride ion in mono- to tetra-methoxy-substituted ortho-nitrobenzaldehydes was systematically investigated. Unexpectedly, the highly methoxylated precursors 2,3,4-trimethoxy-6-nitrobenzaldehyde and 2,3,4,5-tetramethoxy-6-nitrobenzaldehyde showed high maximum radiochemical yields (82% and 48% respectively). When the electrophilicity of the leaving group substituted carbon atom is expressed by its 13C NMR chemical shift a good correlation with the reaction rate at the beginning of the reaction (first min) was found (R2 = 0.89), whereas the maximum radiochemical yields correlated much poorer with this electrophilicity parameter. This may be caused by side reactions becoming influencial in the further reaction course. As possible side reactions the demethylation of methoxy groups and intramolecular redox reactions could be detected by HPLC/MS.  相似文献   

19.
Readily available, low cost, hydrosoluble poly(ethylene-glycol) derivatives of 2-(trifluoromethyl)-3,3,3-trifluoro-propanoic acid were easily synthesized and their properties as MRI agents are preliminarily investigated. Two novel polymers, of 2356 Da and 756 Da, respectively, both showing a single 19F signal at NMR in deuterated chloroform and D2O were fully characterized; both compounds were shown to be soluble in water. However when experiments of in vitro MR imaging were conducted a clear imaging was obtained only with the sample of 756 MW, pointing at the importance of the fluorine content of the carrier.  相似文献   

20.
Fluorine, hydrogen, and 13C NMR spectral data have been obtained for vinyl alkyl ethers containing fluorines. Some of the molecules are perfluorinated and others include hydrogen, bromine, and chlorine substituents. New generalizations regarding FF spin-spin coupling are developed and used, along with previously recognized correlations, in the confirmation of structures and the assignments of resonances. 13C spectroscopy, especially the analysis of 13C19F coupling, is critical in several of the structure determinations. Chlorine isotope effects on fluorine chemical shifts are observed when the chlorine and fluorine are attached to the same carbon, and are also used in the structure analyses. Long-range couplings between fluorines in the vinyl group and fluorines in the alkyl group are interpreted in terms of molecular geometry which allows certain of the alkyl fluorines to “touch” the fluorines cis and gem to the ether oxygen but not the fluorine trans to the oxygen. Two bond 13C19F coupling across the vinyl double bond is found to vary dramatically with the electronegativity of the vinyl substituents in the ethers, in accordance with previous observations for olefins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号