首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
湍流边界层内准流向发卡涡生成的数值模拟   总被引:1,自引:0,他引:1  
采用根据共振三波理论模型建立的初始准二维流场和直接数值模拟方法,对湍流边界层近壁区流向涡的生成进行了研究.计算得到了准流向发卡涡和次生准流向涡结构的生成过程及其主要特征,讨论了它们的产生机理.作为相干结构的主要特征,利用共振三波理论模型对流向涡结构生成与演化过程的研究为湍流边界层内相干结构的研究与流动控制提供了新的途径和思路.  相似文献   

2.
用子波谱分析壁湍流多尺度结构的能量传递   总被引:4,自引:1,他引:3  
测量了壁湍流不同法向位置的流向速度.用子波变换研究湍流能谱,表明子波全局谱是Fourier谱按子波尺度加权平均的结果,高阶消失矩的子波变换能够表征湍谱的衰减特性;子波局部谱显示边界层内涡的变形、破碎等现象与边界层法向位置有关,含能涡结构呈多尺度分布,随着测点远离壁面,含能涡的尺度增大;在缓冲区出现更高频的小尺度含能涡,在外区能量集中在低频大尺度涡结构中,含能涡的频带变窄.  相似文献   

3.
两类变时间步长的非线性Galerkin算法的稳定性   总被引:3,自引:0,他引:3  
何银年  侯延仁 《计算数学》1999,21(2):139-156
1.引言近年来,随着计算机的飞速发展,人们越来越关心非线性发展方程解的渐进行为.为了较精确地描述解在时间t→∞时的渐进行为,人们发展了一类惯性算法,即非线性Galerkin算法.该算法是将来解空间分解为低维部分和高维部分,相应的方程可以分别投影到它们上面,它的解也相应地分解为两部分,大涡分量和小涡分量;然后核算法给出大涡分量和小涡分量之间依赖关系的一种近似,以便容易求出相应的近似解.许多研究表明,非线性Galerkin算法比通常的Galerkin算法节省可观的计算量.当数值求解微分方程时,计算机只能对已知数据进行有限位…  相似文献   

4.
近壁湍流脉动的概率分布函数   总被引:3,自引:0,他引:3  
采用大涡模拟方法,模拟槽道湍流,获得了不同雷诺数情形下的槽道流大涡模拟数据库.在此基础上,获得了流向和垂向脉动速度的概率分布函数,并运用假设检验,分析了其与正态分布的定量差别.进一步计算了流向和垂向脉动速度的偏斜度、平坦度,讨论了二者在粘性子层、过渡区和对数律区的变化.同时,讨论了粘性子层、过渡区和对数律区流向和垂向脉动速度概率分布函数的特点及其与湍流猝发的高速流下扫和低速流喷发事件的关系.最后,分析了雷诺数对流向、垂向脉动速度分布的影响.  相似文献   

5.
研究了两种改善风力机叶型气动性能的流动控制技术,分别对风力机专用S809翼型和较大升阻比的FX 60-100翼型进行应用研究.首先,通过在叶型前缘加装流动偏转器,研究流动偏转器对叶型流动分离的控制效果.并采用多岛基因算法,对流动偏转器进行多参数优化.结果表明:流动偏转器可以有效控制叶型的失速特性,推迟失速攻角和增加升力;基因优化算法能更大地提升流动偏转器的控制效果.其次,基于对风力机叶尖旋涡和尾涡特征以及叶片表面压力分布的分析,在叶片尖部加装不同倾斜角的旋涡扩散器控制叶尖涡.结果表明:涡扩散器能够提高叶尖涡涡核的总压,削弱其旋涡强度,使风力机尾流旋涡耗散更快,从而可以减小噪声,提高叶片效率.  相似文献   

6.
转捩边界层中次生流向涡演化的数值研究   总被引:1,自引:0,他引:1  
采用高精度直接数值模拟方法和高效的特征无反射边界条件,进行可压缩流转捩边界层中出现的次生流向涡演化的数值研究.精细的数值模拟结果清楚地揭示了转捩边界层的复杂流场中次生流向涡的形成和演化过程,探讨它对转捩至关重要的环状涡生成的影响,发现次生流向涡和主流向涡的共同作用形成环状涡的一种新机理.  相似文献   

7.
基于在不同射流角(10°, 27.5°, 45°, 90°)和射流总压(0.1 MPa, 0.46 MPa)下,对音速次膨胀射流通过菱形口喷射到马赫5横穿主流的实验及圆形射流器的对比实验,研究了次膨胀射流与超音横穿主流相互作用流场, 实验包括横截面流场的Pitot和锥静压力, 获得横截面马赫数、 压力分布.结果表明近壁面低马赫数半圆区为尾区,尾区附近边界层减薄.脱体激波高度向自由流扩展,激波形状更弯曲, 低马赫数区较大.高射流压力和射流角增加羽流涡度,激波位置较高.90°菱形和圆形喷射器有更强的羽流涡度,但圆形喷射器的低马赫数区较小.前沿渐细的变壁面的斜面物增加羽流涡度,反之,双变壁面的斜面物减弱羽流涡度.通过表面激波形状、中心平面激波及横截面激波模化三维激波形状,激波总压损失用正激波关系式通过马赫数法向分量估计.激波总压损失随射流角和动压比的减小而减小,最大损失发生在90°圆形和菱形喷射器.  相似文献   

8.
Okubo-Weiss函数与流元的容变、畸变以及涡量相关,可以用来评估流场的涡结构.经该文数学证明,对于边界无滑移的,低Reynolds数的二维不可压缩流动,Okubo-Weiss函数的全流场积分为0.还以电磁控制的圆柱绕流为例,通过数值计算,对该结论进行了验证.根据计算结果,依据Okubo-Weiss函数值,对流场进行了划分,讨论了总涡度拟能、总变形率和Okubo-Weiss函数在流场中的分布规律,以及电磁力对分布的影响.  相似文献   

9.
采用数值计算方法对亚音速三角翼纵向及带有小侧滑和横侧小扰动情况下的流场结构进行了计算,利用数值计算所得到的大迎角流动流场数据,结合相关的实验研究结果,建立了对大迎角旋涡流场结构进行定量分析的方法.给出了三角翼大迎角情况下相应的气动力、力矩系数,以及机翼前缘分离涡轴线位置和旋涡破裂位置随迎角的变化规律,并对带有小侧滑和横侧小扰动情况下对横侧力矩的影响进行了计算与分析.计算结果表明,在前缘分离涡破裂前的上游旋涡区内,前缘分离涡轴线基本保持为直线,且随着迎角增加,前缘分离涡轴线位置愈靠近翼根,并远离翼面;在前缘分离涡破裂的初始阶段,于旋涡轴线处,压力系数会迅速增加,沿涡轴线方向速度迅速减小,在垂直于流向的截面内,愈靠近涡轴线处,沿涡轴线方向速度愈小,甚至出现负值,说明沿涡轴线方向出现回流.当绕机翼上表面前缘分离涡破裂后,将会导致横侧运动不稳定,如果受到小扰动,将产生横侧力矩发散.  相似文献   

10.
湍流的耗散及弥散相互作用理论   总被引:3,自引:0,他引:3       下载免费PDF全文
高歌 《中国科学A辑》1985,28(5):457-465
本文推导了表征耗散与弥散相互作用的新的湍流控制方程组,其特点是:用稳定性分析得到湍流动能产生项,再根据广义熵增原理推出并列存在的分别适用于强弱涡量的两个湍流动量方程。运用该理论已成功地计算了一些典型的湍流问题:湍流边界层中的马蹄涡拟序结构、钝体尾涡区的湍流能量逆转、湍流涡团散裂弛豫及各向异性分布,文中还给出了部分算例。  相似文献   

11.
The dynamics of the reshocked multi-mode Richtmyer-Meshkov instability is investigated using 513×257 2three-dimensional ninth-order weighted essentially nonoscillatory shock-capturing simulations.A two-mode initial perturbation with superposed random noise is used to model the Mach 1.5 air/SF6 Vetter-Sturtevant shock tube experiment. The mass fraction and enstrophy isosurfaces,and density cross-sections are utilized to show the detailed flow structure before,during,and after reshock.It is shown that the mixing layer growth agrees well with the experimentally measured growth rate before and after reshock.The post-reshock growth rate is also in good agreement with the prediction of the Mikaelian model.A parametric study of the sensitivity of the layer growth to the choice of amplitudes of the short and long wavelength initial interfacial perturbation is also presented.Finally,the amplification effects of reshock are quantified using the evolution of the turbulent kinetic energy and turbulent enstrophy spectra,as well as the evolution of the baroclinic enstrophy production,buoyancy production,and shear production terms in the enstrophy and turbulent kinetic transport equations.  相似文献   

12.
The conservation of mass, momentum, energy, helicity, and enstrophy in fluid flow are important because these quantities organize a flow, and characterize change in the flow's structure over time. In turbulent flow, conservation laws remain important in the inertial range of wave numbers, where viscous effects are negligible. It is in the inertial range where energy, helicity (3d), and enstrophy (2d) must be accurately cascaded for a turbulence model to be qualitatively correct. A first and necessary step for an accurate cascade is conservation; however, many turbulent flow simulations are based on turbulence models whose conservation properties are little explored and might be very different from those of the Navier-Stokes equations.We explore conservation laws and approximate conservation laws satisfied by LES turbulence models. For the Leray, Leray deconvolution, Bardina, and Nth order deconvolution models, we give exact or approximate laws for a model mass, momentum, energy, enstrophy and helicity. The possibility of cascades for model quantities is also discussed.  相似文献   

13.
《Applied Mathematical Modelling》2014,38(17-18):4226-4237
Strong nonlinear or very fast phenomena such as mixing, coalescence and breakup in chemical engineering processes, are not correctly described using average turbulence properties. Since these phenomena are modeled by the interaction of fluid particles with single or paired vortices, distribution of the properties of individual turbulent vortices should be studied and understood. In this paper, statistical analysis of turbulent vortices was performed using a novel vortex tracking algorithm. The vortices were identified using the normalized Q-criterion with extended volumes calculated using the Biot–Savart law in order to capture most of the coherent structure related to each vortex. This new and fast algorithm makes it possible to estimate the volume of all resolved vortices. Turbulence was modeled using large-eddy simulation with the dynamic Smagorinsky–Lilly subgrid scale model for different Reynolds numbers. Number density of turbulent vortices were quantified and compared with different models. It is concluded that the calculated number densities for vortices in the inertial subrange and also for the larger scales are in very good agreement with the models proposed by Batchelor and Martinez-Bazán. Moreover, the associated enstrophy within the same size of coherent structures is quantified and its distribution is compared to models for distribution of turbulent kinetic energy. The associated enstrophy within the same size of coherent structures has a wide distribution that is normal distributed in the logarithmic scale.  相似文献   

14.
Effects of wall-based skin-friction drag reduction strategies on the statistical properties of large-scale motions in moderate Reynolds number turbulent flows have been investigated by exploiting Direct Numerical Simulation of turbulent channels. To educe large scales, a new efficient parallel distributed memory algorithm has been implemented which delivers data-driven modes of increasing characteristic lengthscales: the Fast and Adaptive Bidimensional Empirical Mode Decomposition (FABEMD). The influence of wall-based skin friction reduction on large scales is studied by comparing single point statistics, such as r.m.s. fluctuations, and two-point statistics, as cross-correlation functions in controlled and uncontrolled channel flow fields at constant friction Reynolds number. The traditional way of observing large-scale footprinting at the wall, as cross-correlation of the streamwise velocity components at different wall distances, has been found to be unreliable when comparing drag-reduced flows, due to the arbitrary choice of a reference plane in the logarithmic layer. A more sound way of observing the footprinting via the correlation of the streamwise velocity with the friction velocity is addressed and shows an increase of the footprinting in drag-reduced flows. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Dmitry Krasnov  Thomas Boeck 《PAMM》2016,16(1):631-632
We perform large-eddy simulations of turbulent MHD channel flow with a streamwise magnetic field using a pseudo spectral method. The streamwise magnetic field leads to turbulent drag reduction due to the selective Joule damping of certain flow structures. Near the walls, the turbulent mean velocity profile retains the logarithmic layer but the von Karman constant decreases with increasing magnetic field strength. In the outer region, the flow is characterized by persistent streaky structures of large streamwise extent, which lead to a rather flat mean velocity profile. In addition, the streamwise velocity fluctuations develop a pronounced second peak upon increasing the magnetic induction as well as a second logarithmic layer that increases in steepness. We find that Prandtl's classical mixing-length model with a variable Kármán constant can describe the modified logarithmic layer reasonably accurately in a wide range of Reynolds and Hartmann numbers. However, the flow modification near the center of the channel is not properly captured by this approach. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Dissipation of enstrophy in 2D incompressible flows in the zero viscous limit is considered to play a significant role in the emergence of the inertial range corresponding to the forward enstrophy cascade in the energy spectrum of 2D turbulent flows. However, since smooth solutions of the 2D incompressible Euler equations conserve the enstrophy, we need to consider non-smooth inviscid and incompressible flows so that the enstrophy dissipates. Moreover, it is physically uncertain what kind of a flow evolution gives rise to such an anomalous enstrophy dissipation. In this paper, in order to acquire an insight about the singular phenomenon mathematically as well as physically, we consider a dispersive regularization of the 2D Euler equations, known as the Euler-\(\alpha \) equations, for the initial vorticity distributions whose support consists of three points, i.e., three \(\alpha \)-point vortices, and take the \(\alpha \rightarrow 0\) limit of its global solutions. We prove with mathematical rigor that, under a certain condition on their vortex strengths, the limit solution becomes a self-similar evolution collapsing to a point followed by the expansion from the collapse point to infinity for a wide range of initial configurations of point vortices. We also find that the enstrophy always dissipates in the sense of distributions at the collapse time. This indicates that the triple collapse is a mechanism for the anomalous enstrophy dissipation in non-smooth inviscid and incompressible flows. Furthermore, it is an interesting example elucidating the emergence of the irreversibility of time in a Hamiltonian dynamical system.  相似文献   

17.
采用谱方法,在曲线坐标系下对不可压缩Newton流体的N-S方程进行求解,采用定义在物理空间中的流动物理量以避免使用协变、逆变形式的控制方程.在计算空间采用Fourier-Chebyshev谱方法进行空间离散,时间推进采用高精度时间分裂法.为了减小时间分裂带来的误差,采用了高精度的压力边界条件.与其他求解协变、逆变形式控制方程的谱方法相比,该方法在保持谱精度的同时减小了计算量.首先通过静止波形壁面和行波壁面槽道湍流的直接数值模拟,对该数值方法进行了验证;其次,作为初步应用,利用该方法研究了槽道湍流中周期振动凹坑所产生的流动结构.  相似文献   

18.
A starting point for the conventional theory of turbulence [12–14] is the notion that, on average, kinetic energy is transferred from low wave number modes to high wave number modes [19]. Such a transfer of energy occurs in a spectral range beyond that of injection of energy, and it underlies the so-called cascade of energy, a fundamental mechanism used to explain the Kolmogorov spectrum in three-dimensional turbulent flows. The aim of this Note is to prove this transfer of energy to higher modes in a mathematically rigorous manner, by working directly with the Navier–Stokes equations and stationary statistical solutions obtained through time averages. To the best of our knowledge, this result has not been proved previously; however, some discussions and partly intuitive proofs appear in the literature. See, e.g., [1,2,10,11,16,17,21], and [22]. It is noteworthy that a mathematical framework can be devised where this result can be completely proved, despite the well-known limitations of the mathematical theory of the three-dimensional Navier–Stokes equations. A similar result concerning the transfer of energy is valid in space dimension two. Here, however, due to vorticity constraints not present in the three-dimensional case, such energy transfer is accompanied by a similar transfer of enstrophy to higher modes. Moreover, at low wave numbers, in the spectral region below that of injection of energy, an inverse (from high to low modes) transfer of energy (as well as enstrophy) takes place. These results are directly related to the mechanisms of direct enstrophy cascade and inverse energy cascade which occur, respectively, in a certain spectral range above and below that of injection of energy [1,15]. In a forthcoming article [9] we will discuss conditions for the actual existence of the inertial range in dimension three.  相似文献   

19.
Numerical simulation is used to investigate a shear layer influenced by a constant external forcing in the theory of turbulence (Kolmogorov’s problem). The dynamics of flows developing in the case of various initial streamwise velocity profiles are studied. The transition from a two-dimensional laminar flow to a three-dimensional turbulent flow is considered. It is shown that developing hydrodynamic instabilities give rise to an eddy cascade, which, in the transition of the flow to a turbulent stage, corresponds to an eddy cascade developing in the energy and, then, inertial ranges.  相似文献   

20.
Modelling of rotating turbulent flows is a major issue in engineering applications. Intensive research has been dedicated to rotating channel flows in spanwise direction such as by [1], [2] to name only two. In this work a turbulent channel flow rotating about the streamwise direction is presented. The theory is based on the investigations of [4] employing the symmetry theory. It was found that a cross flow in the spanwise direction is induced. A series of direct numerical simulations (DNS) at different rotation numbers is carried out to examine these effects. Further, the results of the DNS are compared to the measuremets of a corresponding experiment. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号