首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wave packet signals in Li(2) prepared by shaped pump pulses are also detected with state-selected shaped probe pulses in the ionization continuum. The results show that the final states are discrete Rydberg states instead of continuum states. Final autoionizing states in the continuum are observed and characterized. By selecting specific resonant rovibrational electronic transitions from the superposition states prepared in the wave packets to the final autoionizing states with the pulse shaping system, the modulation depths of the wave packet signals are increased by as much as 5.20+/-0.03 times. Control of the wave packets is also realized by shaping the probe pulses to select specific resonant transitions between the states in the wave packets and the highly excited Rydberg states. The detected amplitude ratio of one specific vibrational quantum beat to one specific rotational quantum beat can be decreased by ten times.  相似文献   

2.
The implementations of quantum logic gates realized by the rovibrational states of a C(12)O(16) molecule in the X((1)Σ(+)) electronic ground state are investigated. Optimal laser fields are obtained by using the modified multitarget optimal theory (MTOCT) which combines the maxima of the cost functional and the fidelity for state and quantum process. The projection operator technique together with modified MTOCT is used to get optimal laser fields. If initial states of the quantum gate are pure states, states at target time approach well to ideal target states. However, if the initial states are mixed states, the target states do not approach well to ideal ones. The process fidelity is introduced to investigate the reliability of the quantum gate operation driven by the optimal laser field. We found that the quantum gates operate reliably whether the initial states are pure or mixed.  相似文献   

3.
Past studies have shown that oxidation reactions by P450 Compound I (Cpd I) can be described by two competing quartet and doublet spin states, which possess three unpaired electrons, hence tri-radicals. One electron excitation from the delta orbital to sigma* xy generates two states that possess five unpaired electrons, so-called penta-radicals, in sextet and quartet situations, and which were shown by theory to lie only approximately 12-14 kcal/mol higher in energy than the tri-radical ground states (ref 7). The present study focuses on the C-H hydroxylation and C=C epoxidation of propene by these penta-radical states. It is shown that the initial energy differences, between the penta-radical and tri-radical states, diminish along the reaction pathway, due to the favorable and cumulative exchange stabilization of the more open-shell species. Furthermore, theory suggests that hydrogen bonding to the thiolate ligand, and general polarity of the environment, reduce these gaps further, thereby making the penta-radical states accessible to ground-state reactivity. The interconversion between the tri-radical and penta-radical states along the reaction coordinate will depend on the dynamics of spin-flips and energy barriers between the states. Especially interesting should be the region of the reaction intermediates; for both epoxidation and hydroxylation, this region is typified by a dense manifold of spin states and electromeric states (that differ by the oxidation state of iron), such that the total reactivity would be expected to reflect the interplay of these states, giving rise to multistate reactivity.  相似文献   

4.
Although the photodissociation of nitroaromatics in low excitation electronic states has been extensively studied in recent decades, little is known about the highly excited electronic states. The fragmentation dynamics of three nitroaromatics, nitrobenzene, o-nitrotoluene, and m-nitrotoluene, in highly excited states, populated by the absorption of two photons at 271 nm, are studied with time-of-flight mass spectrometry. The temporal evolutions of the highly excited states are monitored by one-photon ionization at 408 nm. The transients of parent and fragment ions exhibit two ultrafast deactivation processes. The first process is ultrafast internal conversion from the initial excitation to Rydberg states in tens of femtoseconds. The second one is conversion from the Rydberg states to the vibrational manifold in the ground electronic states within hundreds of femtoseconds. The internal conversion process is accelerated by methyl substitution. In o-nitrotoluene, the two processes become much faster due to the hydrogen transfer from the CH(3) to the NO(2) group (ortho effect).  相似文献   

5.
6.
The relevant excited states in the rapid photodissociation process of hemoglobin and myoglobin are examined by means of time-dependent density functional theory. Our calculations clearly show that the photodissociation is mediated by two repulsive states (5 A' ' and 3 A') which cross the lowest excited states (1 A' and 1 A' ') at an internuclear Fe-C distance of about 2 A. Electron detachment/attachment density plots nicely explain the repulsive nature of the 5 A' ' and 3 A' states.  相似文献   

7.
The populations of long-lived spin states, in particular, populations of singlet states that are comprised of antisymmetric combinations of product states, |alpha(I)beta(S)> - |beta(I)alpha(S)>, are characterized by very long lifetimes because the dipole-dipole interaction between the two "active" spins I and S that are involved in such states is inoperative as a relaxation mechanism. The relaxation rate constants of long-lived (singlet) states are therefore determined by the chemical shift anisotropy (CSA) of the active spins and by dipole-dipole interactions with passive spins. For a pair of coupled spins, the singlet-state relaxation rate constants strongly depend on the magnitudes and orientations of the CSA tensors. The relaxation properties of long-lived states therefore reveal new information about molecular symmetry and structure and about spectral density functions that characterize the dynamic behavior.  相似文献   

8.
We have determined the lowest excited states of bilirubin IX by TD-DFT calculations. The lowest pair of excited states, S(1) and S(2), turn out to be of charge-transfer (CT) nature. Although DFT based methods tend to underestimate the energy of CT states, the small oscillator strengths we have computed indicate that such states may actually exist in this spectral region, but would have escaped spectroscopic detection. The next pair of excited states, S(3) and S(4), account for the most prominent spectral feature of bilirubin. They can be accurately described by the exciton coupling model, as we show by a thorough analysis of wavefunctions and properties. This finding therefore supports the interpretation of bilirubin photoisomerization behaviour, based on the exciton coupling model.  相似文献   

9.
. An electronic structure-based construction of diabatic states from adiabatic states is formulated that is applicable when individual diabatic states contain several dominant configurations. It is accomplished by maximizing the electronic uniformity of the diabatic states with respect to their dominant configurations throughout the entire nuclear coordinate region. The configurations are generated from unambiguously defined diabatization-adapted molecular orbitals. The orthogonal transformation from adiabatic to diabatic states is deduced by an intrinsic analysis of the adiabatic CI coefficients, without calculating matrix elements of additional, derivative or non-derivative operators. The practicality of the method is demonstrated by applying it to the conical intersection region of the 11 A 1 and 21 A 1 states of ozone.  相似文献   

10.
The symmetry properties of the rovibronic resonance states (Slonczewski resonances) supported by an upright conical potential are investigated. These symmetry properties lead to a useful correlation between states calculated with and without consideration of the geometrical phase, which can assist in the assignment of those states. The vibronic resonance states of triplet H3(+) (2(3)A'), which had been studied by us before, have now been assigned to spectroscopic quantum numbers.  相似文献   

11.
Ab initio molecular orbital calculations have been performed on low-lying electronic states of ScF. The calculations suggest a reassignment of the molecular orbital configurations of the lowest lying Φ states, and suggest also that some of the low-lying Π states may not be well described by single configuration wavefunctions.  相似文献   

12.
The F and CF2–CF2+ excited states have been detected by emission spectroscopy in CF4RF plasmas used for TMPTA polymerization. These excited states are related through electron collision to F and CF2 ground states. The temporal variation of the F and CF2–CF2+ radiative states near the substrate reveals that the F atoms disappear first by incorporation in the monomer during the polymerization phase and, then, by a third body recombination process enhanced by the polymer surface. The CF2–CF2+ radiative states are varying as the inverse of the F states indicating a strong destruction mechanism of CF2 radicals by F atoms.  相似文献   

13.
Using the results of a configuration interaction calculation reported by Rosenberg and Shavitt, we derive an approximation to the correlation energy which may be associated with the sum to infinite order of all linked diagrams involving singly- and doubly-excited states. This result is compared with that obtained by calculation of the energy through third-order. The fourth-order linked diagrams involving quadruply-excited states are computed. It is shown that there is a considerable degree of cancellation between the fourth-order linked diagram energy terms involving doubly-excited intermediate states only and those which contain quadruply-excited states.  相似文献   

14.
Terahertz vibration-rotation-tunneling transitions have been measured between ca. 78.5 and 91.9 cm-1, and assigned to A-E (ortho-para) combinations of NH3 monomer states. The spectrum is complicated by inversion splittings that correlate to E symmetry monomer rovibronic states. Twenty progressions have been assigned to six excited states involving an out-of-plane vibration and an in-plane intermolecular vibration. The quality of the fit was affected by strong Coriolis interactions among these states and possibly an additional K = 2 state that was not explicitly observed in the data.  相似文献   

15.
16.
Simple rules for an estimate of the correlation effects in the low-lying states of alternant hydrocarbons, as described by the Pariser–Parr–Pople Hamiltonian, are formulated. These rules are based on the alternancy and spin symmetry classification of states in both strongly and weakly correlated limits and on the valence bond characteristics of those states in the fully correlated limit. It is shown that the largest effect of the electron correlation will be found for the singlet “minus” states (using Pariser's classification of the alternancy symmetry species), a smaller effect for the triplet “plus” states, and a much smaller effect for the remaining states. These rules are exemplified by limited CI calculations including all monoexcited and all mono- and bi-excited configurations, respectively, for a number of π-electronic systems. In view of these rules the success of the PPP model in the monoexcited CI approximation may be understood.  相似文献   

17.
We report extensive spectroscopic measurements of rovibronic transitions from the MgO X 1Sigma+ ground state to the high-energy E 1Sigma+, F 1Pi1, and G 1Pi1 Rydberg states. Perturbations in the E 1Sigma+ and G 1Pi1 states were observed. The Rydberg molecular orbital character of the three states is examined, given ab initio calculations by Thummel et al. [Chem. Phys. 129, 417 (1989)]. It is concluded that the E 1Sigma+ and G 1Pi1 states consist primarily of the MgO+ X 2Pi ionic core, surrounded by 3ppi and 3psigma Rydberg electron clouds, respectively, and that the F 1Pi1 state consists primarily of the MgO+ A 2Sigma+ ionic core surrounded by a 3ppi Rydberg electron cloud. Spectroscopic characterizations of some unassigned vibrational levels of analogous MgO 3Pi2 states in this energy region are also reported.  相似文献   

18.
19.
The electronic states of the BBr molecule, including 12 valence states and 12 low-lying Rydberg states, have been studied at the theoretical level of MR-CISD+Q with all-electron aug-cc-pVQZ basis sets and Douglas-Kroll [Ann. Phys. (N.Y.) 82, 89 (1974)] scalar relativistic correction. The spin-orbit coupling effect in the valence states was calculated by the state interaction approach with the full Breit-Pauli Hamiltonian. This is the first multireference ab initio study of the excited electronic states of BBr. Potential energy curves of all states were plotted with the help of the avoided crossing rule between electronic states of the same symmetry. The structural properties of these states were analyzed. Computational results reproduced most experimental data well. The transition properties of the a (3)Pi(0(+) ), a (3)Pi(1), and A (1)Pi(1) states to the ground state X (1)Sigma(0(+) ) (+) transitions were obtained, including the transition dipole moments, the Franck-Condon factors, and the radiative lifetimes. The evaluated radiative lifetime of the a (3)Pi(0(+) ), and a (3)Pi(1) states are near 1 ms, much longer than that of the A (1)Pi(1) state.  相似文献   

20.
Very accurate, rigorous, variational, non-Born-Oppenheimer (non-BO) calculations have been performed for the fully symmetric, bound states of the LiH(+) ion. These states correspond to the ground and excited vibrational states of LiH(+) in the ground (2)Sigma(+) electronic state. The non-BO wave functions of the states have been expanded in terms of spherical N-particle explicitly correlated Gaussian functions multiplied by even powers of the internuclear distance and 5600 Gaussians were used for each state. The calculations that, to our knowledge, are the most accurate ever performed for a diatomic system with three electrons have yielded six bound states. Average interparticle distances and nucleus-nucleus correlation function plots are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号