首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photodissociation and photoionization dynamics of HBr via low-n Rydberg and ion-pair states was studied by using 2 + 1 REMPI spectroscopy and velocity map imaging of photoelectrons. Two-photon excitation at about 9.4-10 eV was used to prepare rotationally selected excited states. Following absorption of the third photon the unperturbed F (1)Delta(2) and i (3)Delta(2) states ionize directly into the ground vibrational state of the molecular ion according to the Franck-Condon principle and upon preservation of the ion core. In case of the V (1)Sigma(+)(0(+)) ion-pair state and the perturbed E (1)Sigma(+)(0(+)), g (3)Sigma(-)(0(+)), and H (1)Sigma(+)(0(+)) Rydberg states the absorption of the third photon additionally results in a long vibrational progression of HBr(+) in the X (2)Pi state as well as formation of electronically excited atomic photofragments. The vibrational excitation of the molecular ion is explained by autoionization of repulsive superexcited states into the ground state of the molecular ion. In contrast to HCl, the perturbed Rydberg states of HBr show strong participation of the direct ionization process, with ionic core preservation.  相似文献   

2.
We have employed (2+1) resonance-enhanced multiphoton ionization spectroscopy to record electronic absorption spectra of NO-Rg (Rg=Ne,Ar,Kr) van der Waals complexes. The nitric oxide molecule is the chromophore, and the excitation corresponds to an electron being promoted from the 2ppi* orbital to 3dsigma, 3dpi, and 3ddelta Rydberg states. We review the ordering of the 3dlambda states of NO and use this as a basis for discussing the 3d components in the NO-Rg complexes, in terms of the interactions between the Rydberg electron, the core, and the Rg atom. Predissociation of the H' 2Pi state occurs through the F2Delta state for NO-Ar and NO-Kr, and this will be considered. We shall also outline problems encountered when trying to record similar spectra for NO-Xe, related to the presence of atomic Xe resonances.  相似文献   

3.
Ab initio electronic structure calculations of a relatively large number of Rydberg states of the CH radical were carried out employing the multireference single and double excitation configuration interaction (MRD-CI) method. A Gaussian basis set of cc-pV5Z quality augmented with 12 diffuse functions was used together with an extensive treatment of electron correlation. The main focus of this contribution is to investigate the 3d Rydberg complex assigned by Watson [Astrophys. J. 555, 472 (2001)] to three unidentified interstellar bands. The authors' calculations reproduce quite well the absolute excitation energies of the three components of the 3d complex, i.e., 2Sigma+(3dsigma), 2Pi(3dpi), and 2Delta(3ddelta), but not the energy ordering inferred from a rotational assignment of the 3d<--X 2Pi laboratory spectrum. The computation of the 4d complex is reported for the first time along with a number of other higher lying Rydberg species with an X 1Sigma+ core. The lowest Rydberg states belonging to series converging to the a 3Pi and A 1Pi excited states of CH+ are also calculated.  相似文献   

4.
Using ultrahigh-resolution 1 XUV+1 UV two-photon ionization laser spectroscopy, the F (3)Pi(u)<--X (1)Sigma(g) (+)(0,0) transition of N(2) has been optically observed for the first time, and the 3s sigma(g)F (3)Pi(u)(upsilon=0) Rydberg level fully characterized with rotational resolution. The experimental spectroscopic parameters and predissociation level widths suggest strong interactions between the F state and the 3p pi(u)G (3)Pi(u) Rydberg and C(') (3)Pi(u) valence states, analogous to those well known in the case of the isoconfigurational (1)Pi(u) states.  相似文献   

5.
We report the results of a (2+1) resonance-enhanced multiphoton ionization (REMPI) study of the E2Sigma+(4ssigma) Rydberg state of NO-Kr. We present an assignment of the two-photon spectrum based on a simulation, and discuss it in the context of previously-reported spectra of NO-Ne and NO-Ar. In addition, we report on spectra in the region of the vNO=1 level of the E, F and H' 4s and 3d Rydberg states of NO-Rg (Rg=Ne-Kr). Since the NO vibrational frequency is affected by electron donation from the rare-gas (Rg) atom to the NO+ core, as well as by the penetration of the Rydberg electron, the fundamental NO-stretch frequency reflects the interactions in the complex. The results indicate that the 4s Rydberg state has a strong interaction between the NO+ core and the Kr atom, as was the case for NO-Ar and NO-Ne. For the 3d Rydberg states, although penetration is not as significant as for the 4s Rydberg states, it does play an important role, with subtle angular effects being notable.  相似文献   

6.
Rotationally cold absorption and two-photon ionization spectra of CO in the 90-100 nm region have been recorded at a resolution of 0.3-1.0 cm(-1). The analyses of up to four isotopomers seek to clarify the observations in regions where the Rydberg levels built on the ground state X (2)Sigma(+) of the ion interact with valence states of (1)Sigma(+) and (1)Pi symmetry. Previous observations of the 3ssigma, B (1)Sigma(+) Rydberg state, reviewed by Tchang-Brillet et al. [J. Chem. Phys. 96, 6735 (1992)], have been extended to energies above its avoided crossing with the repulsive part of the D(') (1)Sigma(+) valence state where resonances of varying intensities and widths have been attributed to the fully coupled 3ssigma or 4ssigma and D(') potentials, and where the B state approaches a second avoided crossing with the C(') (1)Sigma(+) valence state [Cooper and Kirby, J. Chem. Phys. 87, 424 (1987); 90, 4895 (1989); Chem. Phys. Lett. 152, 393 (1988)]. Fragments of a progression of weak and mostly diffuse bands, observed for all four isotopomers, have been assigned to the C(')<--X transition. The least-squares modeling of the 4p and 5p complexes reveals the 3ppi, E (1)Pi Rydberg state to be one of the perturbers, violating the Deltav=0 selection rule for Rydberg-Rydberg interactions on account of its rapid transition with increasing v from Rydberg to valence state. A second (1)Pi perturber, very loosely bound and clearly of valence type, contributes to the confusion in the published literature surrounding the 5p, v=0 complex.  相似文献   

7.
Ab initio based configuration interaction calculations have been carried out to study the low-lying electronic states and spectroscopic properties of the heaviest nonradioactive silicon chalcogenide molecule and its monopositive ion. Spectroscopic constants and potential energy curves of states of both SiTe and SiTe+ within 5 eV are reported. The calculated dissociation energies of SiTe and SiTe+ are 4.41 and 3.52 eV, respectively. Effects of the spin-orbit coupling on the electronic spectrum of both the species are studied in detail. The spin-orbit splitting between the two components of the ground state of SiTe+ is estimated to be 1880 cm(-1). Transitions such as 0+ (II)-X1Sigma(+)0+, 0+ (III)-X1Sigma(+)0+, E1Sigma(+)0+ -X1Sigma(+)0+, and A1Pi1-X1Sigma(+)0+ are predicted to be strong in SiTe. The radiative lifetime of the A1Pi state is less than a microsecond. The X(2)2Pi(1/2)-X(1)2Pi(3/2) transition in SiTe+ is allowed due to spin-orbit mixing. However, it is weak in intensity with a partial lifetime for the X2 state of about 108 ms. The electric dipole moments of both SiTe and SiTe+ in their low-lying states are calculated. The vertical ionization energies for the ionization of the ground-state SiTe to different ionic states are also reported.  相似文献   

8.
We studied the ion-pair formation dynamics of F2 at 18.385 eV (67.439 nm) using the velocity map imaging method. It was found that there are two dissociation channels corresponding to production of F(+)((1)D(2)) + F(-)((1)S(0)) and F(+)((3)P(j)) + F(-)((1)S(0)). The measured center-of-mass translational energy distribution shows that about 98% of the dissociation occurs via the F(+)((1)D(2)) channel. The measured angular distributions of the photofragments indicate that dissociation for the F(+)((3)P(j)) channel occurs via predissociation of Rydberg states converging to F(2)(+)(A(2)Pi(u)) and dissociation for the F(+)((1)D(2)) channel involves mainly a direct perpendicular transition into the ion-pair state, or X(1)Sigma(g)(+) --> 2(1)Pi(u), which is also supported by the transition dipole moment calculations .  相似文献   

9.
The velocity-map imaging technique was used to record photoelectron and photofragment ion images of HCl following two-photon excitation of the E Sigma(+)(0+), V 1Sigma(+)(0+) (nu=9,10,11) states and subsequent ionization. The images allowed us to determine the branching ratios between autoionization and dissociation channels for the different intermediate states. These branching ratios can be explained on the basis of intermediate state electron configurations, since the configuration largely prohibits direct ionization in a one-electron process, and competition between autoionization and dissociation into H* (n=2)+Cl and H+Cl*(4s,4p,3d) is observed. From a fit to the vibrationally resolved photoelectron spectrum of HCl+ it is apparent that a single superexcited state acts as a gateway to autoionization and dissociation into H+Cl*(4s). Potential reconstruction of the superexcited state to autoionization was undertaken and from a comparison of different autoionization models it appears most likely that the gateway state is a purely repulsive and low-n Rydberg state with a (4Pi) ion core.  相似文献   

10.
Amplified spontaneous emission (ASE) from single rovibrational levels of valence (non-Rydberg) states of NO molecules has been investigated. The B2Pi (v=24 and 25), L2Pi (v=5 and 6), and I2Sigma+ (v=6) levels have been populated through laser optical-optical double resonance excitation via the Rydberg A2Sigma+ state. Term values for the 2Pi states have been determined with an accuracy of +/-0.03 cm(-1). Analyses of rotationally resolved dispersed ASE spectra in the near infrared region have shown that all the lower states belonged to the Rydberg states. The valence approximately Rydberg coupling in the upper manifolds has driven ASE systems from the valence to the Rydberg levels where they benefit from the strong intensities of inter-Rydberg transitions with Deltav=0. The experimentally predicted valence approximately Rydberg interactions have been compared with theoretical treatments.  相似文献   

11.
12.
High-level ab initio potential-energy curves and transition dipole moments for the OH X 2Pi, 2 2Pi, 1 2Sigma-, D 2Sigma-, 3 2Sigma-, A 2Sigma+, B 2Sigma+, 1 2Delta, 1 4Sigma-, and 1 4Pi states are computed. The results are used to estimate the (2+1) resonance enhanced multiphoton ionization spectrum for the (D,3)2Sigma-(upsilon')<--2hnuX 2Piupsilon") transitions, which are compared with experiments by Greenslade et al. [see M. E. Greenslade, M. I. Lester, D. C. Radenovic, J. A. van Roij, and D. H. Parker, J. Chem. Phys. 123, 074309 (2005), preceeding paper]. We use the discrete variable representation-absorbing boundary condition method to incorporate the effect of the dissociative intermediate 1 2Sigma- state. We obtain qualitative agreement with experiment for the line strengths. Radiative and predissociative decay rates of the Rydberg (D,3)2Sigma- states of OH and OD were computed, including spin-orbit coupling effects and the effect of spin-electronic and gyroscopic coupling. We show that the lifetime of the Rydberg 2Sigma- states for rotationally cold molecules is limited mainly by predissociation caused by spin-orbit coupling.  相似文献   

13.
High resolution photodetachment spectra of C4H- and C4D- obtained via slow electron velocity-map imaging (SEVI) are presented. The spectra reveal closely spaced transitions to the neutral 2Sigma+ and 2Pi states which can be distinguished based on the corresponding photoelectron angular distributions. The C4H ground state is confirmed as the X2Sigma+ state, with the excited A2Pi state lying only 213 cm(-1) higher (201 cm(-1) for C4D). The electron affinities (EAs) are slightly revised to EA (C4H)=28,497+/-8 cm(-1) and EA (C4D)=28,478+/-10 cm(-1). Progressions in low frequency bending vibrations are observed in both states, yielding experimental frequencies of nu7=179(169) cm(-1) and nu6=408(392) cm(-1) for the X2Sigma+ state of C4H (C4D), and nu7=220(215)cm(-1) and nu6=446(437) cm(-1) for the A2Pi state.  相似文献   

14.
Highly correlated coupled cluster methods with single and double excitations (CSSD) and CCSD with perturbative triple excitations were used to predict molecular structures and harmonic vibrational frequencies for the electronic ground state X 1Sigma+, and for the 3Delta, 3Sigma+, 3Phi, 1 3Pi, 2 3Pi, 1Sigma+, 1Delta, and 1Pi excited states of NiCO. The X 1Sigma+ ground state's geometry is for the first time compared with the recently determined experimental structure. The adiabatic excitation energies, vertical excitation energies, and dissociation energies of these excited states are predicted. The importance of pi and sigma bonding for the Ni-C bond is discussed based on the structures of excited states.  相似文献   

15.
The lowest Omega = 0-,0+,1,2 fine-structure potential energy curves arising from the two lowest-lying singlet (X 1Sigma+ and 2 1Sigma+) and the first 3Pi electronic states of AgI were obtained through an effective Hamiltonian; the purely electronic LambdaSSigma energies were used as diagonal elements, which were calculated through extensive complete active space self-consistent field + averaged coupled pair functional calculations, with relativistic effective core potentials and optimized Gaussian basis sets for both atoms. The spin-orbit interactions were included using the Stuttgart effective spin-orbit potentials. For the excited Omega = 0+ states, very strong mixtures were found of the 2 1Sigma+ and 3Pi parents that lead to the fine-structure (0+) single B state (dominated by the 2 1Sigma+ parent at long distance), that explains the B <-- X transitions. The present results also explain the presence of a second long-distance minimum for the B0+ state, experimentally Rydberg-Klein-Rees fitted. These calculations produced, as a byproduct, a new lower-lying Omega = 0+ yet unobserved fine-structure state predicted to exist around 22,000 cm(-1). Our theoretical results are compared and discussed in the light of the experimental data for the B-X transitions in silver halides [J. Chem. Phys. 109, 9831 (1998)].  相似文献   

16.
Configuration interaction calculations have been carried out on electronic states of the NaLi molecule and the cation NaLi(+). Potential energy curves are presented for the lowest nine (1)Sigma(+), seven (1)Pi, four (1)Delta, eight (3)Sigma(+), seven (3)Pi, and four (3)Delta states of NaLi as well as for the lowest ten (2)Sigma(+), six (2)Pi, and two (2)Delta states of NaLi(+). The results of the present many-electron configuration interaction calculations on the cation are in support of previous core-polarization effective potential calculations. The present calculations on the NaLi molecule are complementary to previous theoretical work on this system, including recently observed electronic states that had not been calculated previously as well as an investigation of nonadiabatic effects leading to spectral perturbations. Furthermore, ab initio potential energy curves of the neutral and the ground state of the cation are employed to determine quantum defect that may be employed to generate potential energy curves for nd and (n+1)p (for n>3) Rydberg states of NaLi. The present results on the 3 (1)Pi and 4 (1)Pi states are in good agreement with recent experimental work, whereas on the basis of theoretical data, the recently observed state 5 (1)Pi is better described as 6 (1)Pi.  相似文献   

17.
An all-electron full configuration interaction (FCI) calculation of the adiabatic potential energy curves of some of the lower states of BeH molecule is presented. A moderately large ANO basis set of atomic natural orbitals (ANO) augmented with Rydberg functions has been used in order to describe the valence and Rydberg states and their interactions. The Rydberg set of ANOs has been placed on the Be at all bond distances. So, the basis set can be described as 4s3p2d1f3s2p1d(BeH)+4s4p2d(Be). The dipole moments of several states and transition dipole strengths from the ground state are also reported as a function of the R(Be-H) distance. The position and the number of states involved in several avoided crossings present in this system have been discussed. Spectroscopic parameters have been calculated from a number of the vibrational states that result from the adiabatic curves except for some states in which this would be completely nonsense, as it is the case for the very distorted curves of the 3s and 3p (2)Sigma(+) states or the double-well potential of the 4p (2)Pi state. The so-called "D complex" at 54 050 cm(-1) (185.0 nm) is resolved into the three 3d substates ((2)Sigma(+),(2)Pi,(2)Delta). A diexcited valence state is calculated as the lowest state of (2)Sigma(-) symmetry and its spectroscopic parameters are reported, as well as those of the 2 (2)Delta (4d) state The adiabatic curve of the 4 (2)Sigma(+) state shows a swallow well at large distances (around 4.1 A) as a result of an avoided crossing with the 3 (2)Sigma(+) state. The probability that some vibrational levels of this well could be populated is discussed within an approached Landau-Zerner model and is found to be high. No evidence is found of the E(4ssigma) (2)Sigma(+) state in the region of the "D complex". Instead, the spectroscopic properties obtained from the (4ssigma) 6 (2)Sigma(+) adiabatic curve of the present work seem to agree with those of the experimental F(4psigma) (2)Sigma(+) state. The FCI calculations provide benchmark results for other correlation models for the open-shell BeH system and evidence both the limitations and capabilities of the basis set.  相似文献   

18.
Line oscillator strengths in 16 electric dipole-allowed bands of 14N2 in the 93.5-99.5 nm (106,950-100,500 cm(-1)) region have been measured at an instrumental resolution of 6.5 x 10(-4) nm (0.7 cm(-1)). The transitions terminate on vibrational levels of the 3psigma 1Sigma u (+), 3ppi 1Pi u, and 3ssigma 1Pi u Rydberg states and of the b' 1Sigma u (+) and b 1Pi u valence states. The J dependences of band f values derived from the experimental line f values are reported as polynomials in J'(J'+1) and are extrapolated to J'=0 in order to facilitate comparisons with results of coupled-Schrodinger-equation calculations that do not take into account rotational interactions. Most bands in this study reveal a marked J dependence of the f values and/or display anomalous P-, Q- and R-branch intensity patterns. These patterns should help inform future spectroscopic models that incorporate rotational effects, and these are critical for the construction of realistic atmospheric radiative transfer models. Linewidth measurements are reported for four bands. Information provided by the J dependences of the experimental linewidths should be of use in the development of a more complete understanding of the predissociation mechanisms in N2.  相似文献   

19.
The spectra of vibrationally excited nf Rydberg states of nitric oxide were recorded by monitoring the photoion current produced using two-photon double resonance excitation via the NO A (2)Sigma(+) state followed by photoexcitation of the Rydberg state that undergoes autoionization. The optical transition intensities from NO A state to nf Rydberg states were calculated, and the results agree closely with experiment. These results combined with circular dichroism measurements allow us to assign rotational quantum numbers to the nf Rydberg states even in a spectrum of relatively low resolution. We report the positions of these nf (upsilon,N,N(c)) Rydberg levels converging to the NO X (1)Sigma(+) upsilon(+) = 1 and 2 ionization limits where N is the total angular momentum excluding electron and nuclear spin and N(c) represents the rotational quantum number of the ion core. Our two-color optical-optical double resonance measurements cover the range of N from 15 to 28, N(c) from 14 to 29, and the principal quantum number n from 9 to 21. The electrostatic interaction between the Rydberg electron and the ion core is used to account for the rotational fine structure and a corresponding model is used to fit the energy levels to obtain the quadrupole moment and polarizability of the NO(+) core. Comparison with a multichannel quantum defect theory fit to the same data confirms that the model we use for the electrostatic interaction between the nf Rydberg electron and the ion core of NO well describes the rotational fine structure.  相似文献   

20.
Two-dimensional photoelectron spectroscopy of hydrogen iodide (HI) has been performed in the photon energy region of 11.10-14.85 eV, in order to investigate dynamical properties on autoionization and neutral dissociation of Rydberg states HI*(RA) converging to HI+(A 2Sigma1/2(+)). A two-dimensional photoelectron spectrum exhibits strong vibrational excitation of HI+(X 2Pi) over a photon energy region from approximately 12 to 13.7 eV, which is attributable to the autoionizing feature of the 5 dpi HI*(RA) state. A noticeable set of stripes in the photon energy region of 13.5-14.5 eV is assigned as resulting from autoionization of the atomic Rydberg states of I* converging to I+ (3P0 or 3P1). The formation of I* is understood in terms of predissociation of multiple HI*(RA) states by way of the repulsive Rydberg potential curves converging to HI+(4Pi1/2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号