首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
张俊娜  冀楠  黄雁茹  何炜 《合成化学》2018,26(10):744-748
以C2轴手性化合物(S)-1,1′-联萘-2,2′-胺和手性氨基醇为原料,经乙酰化、甲基化、水解等反应合成了3种新型的手性硫脲催化剂,其结构经1H NMR,13C NMR、 IR和HR-MS(ESI)表征。  相似文献   

2.
考察了一系列手性吡咯烷叔胺硫脲催化剂对4 氯代乙酰乙酸乙酯与亚胺的不对称Mannich/Cyclization串联反应的催化性能,合成了一系列具有潜在生物活性的手性特窗酸类衍生物,产率62%~92%,对映选择性68%~96%,产物结构经1H NMR, 13C NMR, IR和HR-MS确证。并对反应条件进行了优化,对反应机理进行了推测。  相似文献   

3.
测定手性有机酸对映体纯度的新试剂   总被引:2,自引:0,他引:2  
用NMR技术测定微量手性化合物的对映体纯度,已有多种方法。其中,加手性镧化物位移试剂法适用面最广,但对有机酸,结果常不理想。另一种使用较广的方法是加手性试剂,将样品中两对映体转变成非对映异构体,然后比较非对映基因NMR信号的强度,确定原样品中对映体的组成比例。国外已出售的手性试  相似文献   

4.
本文合成了三种具有多氢键的联萘酚轴手性硫脲催化剂,并将其用于催化合成1,4-二氢吡啶衍生物。结果显示,所合成的新型多氢键硫脲均表现出较好的催化作用,能有效地提高1,4-二氢吡啶衍生物的收率和对映选择性。所有新化合物结构均经过~1H NMR、~(13)C NMR、IR、熔点等表征所确认。  相似文献   

5.
研究了双功能手性硫脲-叔胺催化剂催化的3-苯基异香豆冉酮衍生物与N-保护亚胺的不对称Mannich反应,高收率、高对映选择性(88%~98%)地合成了一系列具有连续季碳叔碳手性中心的新化合物,其结构经1HNMR和13C NMR表征。  相似文献   

6.
手性有机小分子催化是近年来不对称催化领域的一个热门研究课题.其具有反应条件温和、环境友好等优点,符合绿色化学的要求.手性氨基-硫脲类催化剂,特别是双功能的手性硫脲,已经在众多的不对称反应中表现出了优秀的催化性能.主要综述了双功能手性硫脲在不对称Michael加成反应中的应用,并对其前景及发展趋势作了展望.  相似文献   

7.
以5 mol%辛克宁衍生的手性双功能硫脲叔胺为催化剂,β-羰基酸和N-Boc靛红亚胺为原料,经脱羧Mannich反应合成了14个3-氨基-3,3'-二取代氧化吲哚衍生物,收率73%~99%,其结构经1H NMR,13C NMR和HR-MS(ESI)确证。  相似文献   

8.
通过双官能团硫脲催化的吲哚-3-酮对不饱和酮酯的不对称Michael加成反应研究,以很高的产率、很好的对映选择性和非常好的非对映选择性得到了手性的2-取代吲哚-3-酮类化合物,对吲哚类化合物的手性合成具有积极意义.  相似文献   

9.
王猛  沈竞康 《合成化学》2006,14(4):337-341
运用生物电子等排原理及简化策略,设计含乙二胺结构片段的番荔枝内酯简化类似物.通过N,N′-二苄基乙二胺与两个手性环氧片段依次拼接,合成了手性简化类似物.其结构经1H NMR,13C NMR和MS表征.  相似文献   

10.
手性硫脲-叔胺催化剂(1)催化α-取代硝基乙酸酯与丙烯醛发生Michael加成反应,合成了一系列α,α-双取代芳基氨基酸前体(4a~4j),其结构经1H NMR,13C NMR和ESI-HR-MS表征.以合成4b为例,考察了溶剂,反应温度和反应时间等对反应的影响,结果表明,在1 10 mol%,甲苯为溶剂,于-60 ℃反应100 h的最佳反应条件下,4b的收率94%,74%e.e..并合成了一系列4b的衍生物.  相似文献   

11.
In this work, we report the structural studies on the solid state of two benzodiazacoronads that form chiral and achiral crystals. Crystals have to be considered as a two-component system consisting of an organic unit and a water molecule in 1:1 ratio. Both components play an important role in the crystal structure. The strong (O-H...O, N-H...O) and weak (C-H...O) intermolecular hydrogen bonds are responsible for phase organization and, in consequence, formation of chiral or achiral crystals. The alignment of the water molecule with respect to the macrocycle is different for samples 1 and 2. Removal of water from the crystal lattice of 1 is reversible. Formation of chiral cocrystals from two different achiral molecules by self-assembly is well-known. However, in this paper, we show that the water molecule can be an important achiral cofactor responsible for chiral crystallization.  相似文献   

12.
We describe a simple 1H NMR analysis that permits the stereochemistry of beta-hydroxy ketones to be assigned by visual inspection of the ABX patterns for the alpha-methylene unit of the beta-hydroxy ketone in the 1H NMR spectra. This method has been verified by application to a wide range of beta-hydroxy ketones deriving from aldol reactions of chiral aldehydes with a variety of chiral and achiral methyl ketone enolates (see Tables 1 and 2). The stereochemistry of 54 of these compounds have been assigned by rigorous chemical methods.  相似文献   

13.
Nonlinear effects caused by molecular association of enantiomers in non-racemic mixtures can cause unexpected effects in chiroptics, NMR spectroscopy, homogeneous catalysis, and chromatography. Herein we present a theoretical model to simulate and verify unusual elution orders of enantiomers on an achiral stationary phase doped with a small amount of a chiral selector or achiral columns coupled with columns doped with a chiral selector. Scenarios with strong, medium, and weak associations of enantiomers, different separation efficiencies typical for flash chromatography and liquid chromatography, and the influence of the enantioselectivity of the chiral selector on the complex equilibria have been investigated. The findings presented here are of importance for the validation of the determination of enantiomeric ratios in not fully separated elution zones as well as for the preparative separation of non-racemic enantiomeric mixtures on chiral stationary phases bonded to achiral matrices.  相似文献   

14.
The bicorannulenyl molecule is composed of two chiral bowls tethered by a single bond in a helical fashion. This simple combination of two chiral motifs gives rise to rich dynamic stereochemistry, where 12 conformers interconvert through bowl inversions and central bond rotation, and enantiomerizations occur via multistep processes. Interestingly, 8 out of 10 transition states are chiral, giving rise to mostly chiral enantiomerization pathways, where the molecule changes chirality without passing through an achiral conformation. However, analysis of the stereochemical landscape by DFT calculations and variable temperature NMR spectroscopy reveals that the energetically most favorable enantiomerization pathway passes through one of the two achiral transition states. Single-crystal X-ray diffraction corroborates the DFT results and provides information on packing modes of bicorannulenyl molecules in the solid state that have not been seen previously for other buckybowls.  相似文献   

15.
《Tetrahedron: Asymmetry》2001,12(5):737-744
We describe a deuterium 1D and 2D NMR study of cis-decalin in various chiral and achiral polypeptide oriented solvent systems and the effect of the acquisition temperature. Organic solutions of poly-γ-benzyl-l-glutamate (PBLG) or poly-ε-carbobenzyloxy-l-lysine (PCBLL) in dichloromethane or chloroform allow the chiral invertomers of cis-decalin to be differentiated at low temperature. At high temperature, it is possible to distinguish between deuterium nuclei of the molecule which become enantiotopic under rapid kinetic averaging. The results obtained illustrate the capability of such polypeptide liquid-crystalline solvents to enantioselectively interact with unfunctionalised chiral cycloalkanes and highlight the analytical potential of NMR analysis in chiral liquid crystal based solvents in the investigation of interconverting chiral conformers.  相似文献   

16.
Novel difunctional chiral and achiral benzoxazine monomers were synthesized from the reaction of bisphenol A with paraformaldehyde and primary amines, including S-(+)-3-methyl-2-butylamine and rac-(±)-3-methyl-2-butylamine, by solventless method. The chemical structures of chiral and achiral benzoxazines were identified by fourier transform infrared, nuclear magnetic resonance (1H NMR and 13C NMR). The curing behavior and non-isothermal curing kinetics of chiral and achiral benzoxazine monomers were investigated by differential scanning calorimeter (DSC). Isoconversional methods based on Friedman and Kissinger–Akahira–Sunose were applied to analyze the curing process of chiral and achiral benzoxazines. The thermal properties of cured polymers were characterized by DSC and thermogravimetry. The results suggested that the optical purity and stereo-configuration for chiral and achiral benzoxazines have definite influence on curing behavior and thermal properties despite the same chemical structure. Chiral benzoxazine displayed typical characteristics of difunctional benzoxazines. Achiral benzoxazine showed distinctly double peaks in DSC exotherms due to the presence of racemic and mesomeric isomers. The thermal properties of achiral polybenzoxazine were slightly higher than those of chiral polybenzoxazine, and were much higher than those of other bisphenol A-C3–C8 linear aliphatic amine-based polybenzoxazines because of tight packing, low free volume, and abundant intramolecular and intermolecular hydrogen bonds in network structure of polymers.  相似文献   

17.
A selection of amino-substituted 1,1,2,2,9,9,10,10 octafluoro[2.2]paracyclophanes were tested for enantiodiscrimination by 1H and 19F NMR spectroscopy via their interaction with different lanthanide tris β-diketonate chiral shift reagents. The amino-, and the pseudo-ortho di-amino substituted octafluoro[2.2]paracyclophanes, both of which exhibit planar chirality, revealed significant shifts and splittings of various 1H and 19F NMR signals upon the addition of the chiral shift reagents, which allowed the easy determination of the enantiomeric purity. When the chiral shift reagent was added to an inseparable mixture of the (chiral) pseudo-meta, and (achiral) pseudo-para diamino analogues, both the chiral and achiral molecules revealed NMR doubling. In the case of the achiral molecule, this NMR behavior is due to the meso nature of the pseudo-para species.  相似文献   

18.
Recently, a novel chiral intermolecular interaction was found in an N-deprotected achiral nonapeptide that undergoes the predominance of one-handed screw sense through the addition of chiral small carboxylic acid (Inai, Y.; Tagawa, K.; Takasu, A.; Hirabayashi, T.; Oshikawa, T.; Yamashita, M. J. Am. Chem. Soc. 2000, 122, 11731). We here clarify to what extent such noncovalent chiral domino effect affects the helical screw sense of an N-deprotected chiral peptide. Two chiral peptides consisting of C-terminal L-Leu (1) or L-Leu(2) (2) and the preceding achiral helical octapeptide segment were employed. NMR and IR spectroscopy, and energy calculation indicated that both peptides adopt a helical conformation in chloroform. Peptide 1 showed a small excess of a left-handed screw sense for the achiral helical octapeptide, but peptide 2 strongly preferred a right-handed screw sense. The addition of chiral Boc amino acid to a chloroform solution of peptide 1, depending on its chirality, underwent a unique helix-to-helix transition or led to remarkable stabilization of the original left-handed screw sense. Peptide 2 retained the original right-handed screw sense on addition of chiral Boc-amino acid, but its helical stability changed to some extent depending on its added chirality. Therefore, the importance of noncovalent domino effect for controlling the helical screw sense or helical stability of a chiral peptide has been demonstrated here for the first time. In addition, we here have presented a unique system that both N-terminal noncovalent and C-terminal covalent domino effects operate simultaneously on the helical screw sense of a single achiral segment and have compared both powers for inducing the screw sense bias.  相似文献   

19.
A problem has arisen in using chiral shift reagents (CSR) and chiral solvating agents (CSA) to determine meso and racemic forms of diastereoisomers in which the stereogenic centers of the molecules are separated by achiral spacers. It is found that NMR signals of both meso and racemic forms of diastereoisomers may exhibit doubling on addition of CSR/CSA, which means that unequivocal assignments cannot be made without characterizing the effects for separate meso and racemic forms; this is particularly important for additions of CSR/CSA at relatively low concentrations, which always result in the splitting of some NMR signals of diastereoisomers. The phenomenon is demonstrated in the (31)P NMR spectra of meso and racemic forms of three spermine-bridged gem-disubstituted cyclotriphosphazatrienes, 1a-c, and compared with analogous achiral molecules, the per-substituted spermine-bridged cyclotriphosphazatrienes 2a-d. As expected, only one set of (31)P NMR signals was observed for the achiral compounds 2a-d, even on addition of CSA. Two sets of (31)P NMR ABX multiplets corresponding to meso and racemic diastereoisomers were observed for compounds 1a-c; on addition of CSA, the signals of at least one of the multiplets for each compound separated into more than the expected groups of three lines with an intensity distribution of 2:1:1. To understand this phenomenon, the meso and racemic forms of 1a and 1b and the meso form of 1c have been separated and characterized by X-ray crystallography. On addition of CSA to the racemic forms of 1a and 1b, the (31)P NMR spectrum shows the expected doubling of signals, but, unexpectedly, the same is observed for each of the meso forms of 1a-c. Analogous results using both CSA and CSR have been obtained for the meso and racemic forms of the diastereoisomeric piperazine-bridged macrocyclic-phosphazene compound, 3, whereas no effect was observed for the two meso forms of the doubly bridged macrocyclic-phosphazene compound 4. The phenomenon of doubling of the (31)P NMR signals of the meso form of singly bridged cyclotriphosphazatrienes, 1a-c and 3, is explained by consideration of the equilibrium in solution of independent complexation of a chiral ligand with molecules that have two chiral cyclophosphazene moieties separated by an achiral spacer group. The results show that the stereogenicity of such diastereoisomeric molecules in solution cannot be characterized unequivocally by NMR measurements on addition of either CSR or CSA.  相似文献   

20.
The primary explosive hexamethylenetriperoxide diamine has previously been found to exist in the solid state as a racemic mixture of helically chiral, threefold symmetric enantiomers; another enantiomeric pair of low-energy conformers has been predicted, but has never been observed. We show by solution 2D NMR at 14 T, in achiral solution and by addition of chiral shift reagents, that all four optically isomeric conformers coexist at slow equilibrium on the NMR timescale at room temperature, and can be observed. Calculations of the 1H and 13C NMR chemical shifts using gauge-including atomic orbital methods are in excellent agreement with experiment; thermochemical calculation of the free energies in solution are in somewhat worse agreement, but correctly predict the relative stability of the conformers. Analysis of the effects of chiral shift reagents on the NMR spectra suggests that discrimination between chiral isomers is primarily around the molecular equator, around which the enantiomeric gauche O--O linkages are arrayed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号