首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Activated carbon was chemically modified with ethyl-3-(2-aminoethylamino)-2-chlorobut-2-enoate to obtain a material for selective solid-phase extraction of trace Au(III), Pd(II) and Pt(IV) prior to their determination by inductively coupled plasma atomic emission spectrometry. Experimental conditions such as effects of pH, shaking time, sample flow rate and volume, elution and interfering ions were studied. The ions Au(III), Pd(II) and Pt(IV) can be quantitatively adsorbed on the new sorbent from solution of pH 1. The adsorbed ions were then eluted with 0.1 mol L?1 hydrochloric acid and containing 4% thiourea. Many common ions do not interfere. The adsorption capacity of the material is 305, 92, and 126 mg g?1 for Au(III), Pd(II) and Pt(IV), respectively, and the detection limits are 5, 11 and 9 ng mL?1. The relative standard deviation is less than 3.0% (n?=?8) under optimum conditions. The method was validated by analyzing two certified reference materials and successfully applied to the preconcentration and determination of these ions in actual samples with satisfactory results.
Figure
Activated carbon was chemically modified with ethyl-3-(2-aminoethylamino)-2-chlorobut-2-enoate to obtain a material for selective solid-phase extraction of trace Au(III), Pd(II) and Pt(IV) prior to their determination by inductively coupled plasma atomic emission spectrometry. Parameters affecting solid-phase extraction were systematically studied. This new adsorbent exhibited good characteristics for separation and preconcentration of Au(III), Pd(II) and Pt(IV) in aqueous solution, such as excellent selectivity, fast adsorption equilibrium, high tolerance limits of potentially interfering ions, high enrichment factor and low costs. It also shows relatively high adsorption capacity when compared to several other adsorbents. In addition, the synthetic method of the adsorbent was very simple.  相似文献   

2.
A method was established for the preconcentration of trace Au(III), Pd(II) and Pt(IV) by activated carbon modified with 3,4-dihydroxycinnamic acid. The separation and preconcentration conditions of analytes were investigated, such as effects of pH, the contacting time, the sample ?ow rate and volume, the elution condition and the interfering ions. At a pH of 1.0, the maximum static sorption capacity of the sorbent was found to be 374.8, 96.6 and 137.5 mg g?1 for Au(III), Pd(II) and Pt(IV), respectively. The adsorbed metal ions were effectively eluted with 2.0 mL of 4% thiourea in 0.5 M HCl solution and determined by inductively coupled plasma optical emission spectrometry. The detection limit (3σ) of this method defined by IUPAC was found to be 0.12, 0.18 and 0.32 ?g L?1 for Au(III), Pd(II) and Pt(IV), respectively. The relative standard deviation (RSD) was lower than 3.0% (n = 8) towards standard solutions. The method has been validated by analysing certified reference materials and successfully applied to the determination of trace Au(III), Pd(II) and Pt(IV) in road sediments samples.  相似文献   

3.
A study on the adsorption characteristics of Pb(II) and Cr(III) cations onto C‐4‐methoxyphenylcalix‐[4]resorcinarene (CMPCR) in batch and fixed bed column systems has been conducted. CMPCR was produced by one step synthesis from resorcinol, 4‐methoxybenzaldehyde, and HCl. The synthesis was carried out at 78 °C for 24 hours and afforded the adsorbent in 85.7% as a 3:2 mixture of C:C isomer. Most parameters in batch and fixed bed column systems confirm that CMPCR is a good adsorbent for Pb(II) and Cr(III), though Pb(II) adsorption was more favorable than that of Cr(III). The adsorption kinetic of Pb(II) and Cr(III) adsorptions in batch and fixed bed column systems followed a pseudo 2n order kinetics model. The rate constant of Pb(II) was higher than that of Cr(III) in the batch system, but this result was contrary to the result obtained in a fixed bed column system. Desorption studies to recover the adsorbed Pb(II) and Cr(III) were performed sequentially with distilled water and HCl, and the results showed that the adsorption was dominated by chemisorption.  相似文献   

4.
Salbutamol (SAL) is the most widely used β2‐agonist drug for asthma and chronic obstructive pulmonary patients, but it is also often abused as feed additive. In recent years, the abuse of SAL has led to a large number of food safety incidents. Therefore, the monitoring of SAL residues in animal products is very important. A highly selective boronate affinity magnetic adsorbent was synthesized and developed for detection of trace levels of SAL residues in pig tissue samples. The obtained Fe3O4@SiO2@FPBA(4‐formylphenylboronic acid) magnetic adsorbent showed good adsorption ability to catechol and SAL, and then it was successfully applied as special magnetic solid‐phase phase extraction adsorbent coupled with high‐performance liquid chromatography (HPLC) for simultaneous isolation and determination of cis‐diol compounds. The binding capacity of catechol and SAL reached 96 and 50 µmol/g, respectively. The method was successfully established for the detection of trace levels of SAL in pig tissue samples. The linear range extended from 0.32 to 800 µg/kg (R2 = 0.9994). The limit of detection of SAL was 0.19 µg/kg. The recoveries were satisfactory (89.5–108.0%) at three spiked levels with RSD between 2.1 and 11.3%. These results indicated that the method has potential for enrichment and detection of trace levels of SAL residual in animal food products. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The three‐component polyaddition of diamines, carbon disulfide (CS2), and diacrylates in water was successfully achieved without the use of a surfactant or catalyst. Appropriate reaction conditions (i.e., reaction temperature, reaction time, and CS2 feed) enabled the polyaddition of 1,3‐di‐4‐piperidylpropane ( 1a ), CS2, and 1,6‐hexanediol diacrylate ( 2a ) to afford the corresponding poly(dithiourethane‐amine) containing 83% of dithiourethane units in 84% yield. Polyaddition of other monomers also proceeded under the optimum conditions to afford various poly(dithiourethane‐amine)s. Unsuccessful results for polyaddition in organic solvents such as toluene, tetrahydrofuran, and N,N‐dimethylformamide revealed that the polyaddition is accelerated in water. The obtained poly(dithiourethane‐amine)s adsorbed Au (III) efficiently under acidic conditions, due to the strong interaction of the thiocarbonyl sulfur in the dithiourethane unit with Au (III). The poly(dithiourethane‐amine)s also showed selective adsorption for Au (III) from a mixture of metal ions [Au (III), Fe (III), Mn (II), and Zn (II)], which indicates their potential utilization for the collection of gold. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 845–851, 2010  相似文献   

6.
Poly(acrylp-aminobenzenesulfonamideamidine-p-aminobenzenesulfonylamide) chelating fiber containing "S", "N", and "O" elements was synthesized from polyacrylonitrile fiber and p-aminobenzene sulfonamide and used to enrich and separate trace Bi(III), Hg(III), Au(III), and Pd(IV) ions from wastewater and ore sample solution. The enrichment acidity, flow rate, elution conditions, reuse, interference ions, saturated adsorption capacity, constant of adsorption rate, analytical accuracy, and actual samples on chelating fiber were investigated by means of inductively coupled plasma optical emission spectrometry (ICP-OES) with satisfactory results. Solutions of 100 ng mL–1 of Bi(III), Hg(III), Au(III), and Pd(IV) ions can be enriched quantitatively by this chelating fiber at a rate of 1.0 mL min–1 at pH 4 and desorbed quantitatively with 20 mL of 0.25 M HCl and 2% CS(NH2)2 solution at 50 °C (with recovery 97%). When the chelating fiber was reused for 20 times, the recoveries of the analyzed ions enriched by the fiber were still over 95% (except for Hg(III)). One thousand-fold excesses of Mn2+, Ca2+, Zn2+, Mg2+, Fe3+, Cu2+, Ni2+, Al3+, and Ba2+ ions and thousands-fold excesses of Na+ and K+ cause little interference in the pre-concentration and determination of the analyzed ions. The saturated adsorption capacity of Bi(III), Hg(III), Au(III), and Pd(IV) was 4.850×10–4, 3.235×10–4, 2.807×10–4, and 3.386×10–4 mol g–1, respectively. The constants of adsorption rate were 0.409 min–1 for Bi, 0.122 min–1 for Hg, 0.039 min–1 for Au, and 0.080 min–1 for Pd. The relative standard deviations (RSDs) for the enrichment and determination of 10 ng mL–1 Bi(III), Hg(III), Au(III), and Pd(IV) were lower than 2.3%. The results obtained for these ions in actual samples by this method were basically in agreement with the given values with average errors of less than 1.0%. FT-IR spectra shows that the existence of –SO2–Ar, –H2N–Ar, O=C–NH–, HN=C–NH–, and –HN–SO2 functional groups are verified in the chelating fiber. From the FT-IR spectroscopy, we can see that Hg(III), Au(III), and Pd(IV) are mainly combined with nitrogen and sulfur (or oxygen), and Bi(III) is mainly combined with nitrogen (or oxygen) of the groups to form a chelating complex.  相似文献   

7.
The 1H{15N} NMR spectrum of 5,7‐diphenyl‐1,2,4‐triazolo[1,5‐a]‐pyrimidine ( 3 ) was measured by GHMQC, unambiguously assigned and compared with the spectra of 1,2,4‐triazolo[1,5‐a]pyrimidine ( 1 ) and 5,7‐dimethyl‐1,2,4‐triazolo[1,5‐a]pyrimidine ( 2 ). A series of Au(III) chloride complexes of general formula AuLCl3, where L = 1 , 2 , 3 , was synthesized and studied by 1HH{15N} GHMQC and 1H{13C} GHMBC. Low‐frequency shifts of 72–74 ppm (15N) and 5–6 ppm (13C) were observed upon complexation by Au(III) ions for the coordination site N‐3 and adjacent C‐2, C‐3a atoms, respectively. The 13C signals of C‐5, C‐6, C‐7 and the 1H resonances of H‐2, H‐6 were shifted to higher frequency. Comparison with analogous Pd(II), Pt(II) and Pt(IV) complexes revealed that in the case of Au(III) coordination the 15N shifts were relatively smaller, whereas those for 13C and 1H were larger. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
Excessive consumption of Fe (II) and massive generation of sludge containing Fe (III) from classic Fenton process remains a major obstacle for its poor recycling of Fe (III) to Fe (II). Therefore, the MHACF‐MIL‐101(Cr) system, by introducing H2, Pd0 and MIL‐101(Cr) into Fenton reaction system, was developed at normal temperature and pressure. In this system, the reduction of FeIII back to FeII by solid catalyst Pd/MIL‐101(Cr) for the storage and activation of H2, was accelerated significantly by above 10‐fold and 5‐fold controlled with the H2‐MIL‐101(Cr) system and H2‐Pd0 system, respectively. However, the concentration of Fe (II) generated by the reduction of Fe (III) could not be detected with the only input of H2 and without the addition of MOFs material. In addition, the apparent consumption of Fe (II) in MHACF‐MIL‐101(Cr) system was half of that in classical Fenton system, while more Fe (II) might be reused infinitely in fact. Accordingly, only trace amount of Fe (II) vs H2O2 concentration was needed and hydroxyl radicals through the detection of para‐hydroxybenzoic acid (p‐HBA) as the oxidative product of benzoic acid (BA) by·OH could be continuously generated for the effective degradation of 4‐chlorophenol(4‐CP). The effects of initial pH, concentration of 4‐CP, dosage of Fe2+, H2O2 and Pd/MIL‐101(Cr) catalyst, Pd content and H2 flow were investigated, combined with systematic controlled experiments. Moreover, the robustness and morphology change of Pd/MIL‐101(Cr) were thoroughly analyzed. This study enables better understanding of the H2‐mediated Fenton reaction enhanced by Pd/MIL‐101(Cr) and thus, will shed new light on how to accelerate Fe (III)/Fe (II) redox cycle and develop more efficient Fenton system.  相似文献   

9.
Electrocatalysis of epinephrine at gold electrode pre‐modified with the self‐assembled monolayer of cysteamine and subsequently integrated with novel metallo‐octacarboxyphthalocyanine (MOCPc where M=Fe, Co and Mn) complexes (Au‐Cys‐MOCPc) was investigated. The electrodes showed response to the presence of epinephrine. The oxidation peak potential (Ep/V vs. Ag|AgCl, sat'd KCl) and charge transfer resistance (Rct (kΩ)) in epinephrine solution depend markedly on the central metal of the phthalocyanine cores: Au‐Cys‐FeOCPckch=4.1×107 M?1 s?1) which is higher than that of the Au‐cys‐CoOCPc or Au‐cys‐MnOCPc electrode. Mechanism, recognizing the mediation of the electrocatalytic process by the central M(II)/M(III) redox processes was proposed. Epinephrine electro‐oxidation at the Au‐cys‐FeOCPc electrode was studied in more details for the response characteristics. The diffusion coefficient of epinephrine was evaluated as (2.62±0.23)×10?9 cm2 s?1. It was established that Au‐Cys‐FeOCPc is suitable for sensitive determination of epinephrine in physiological pH (7.40) conditions showing linear concentration range of up to 300 nM, with excellent sensitivity (0.53±0.01 nA nM?1), and very low limits of detection (13.8 nM) and quantification (45.8 nM). The peak separation between ascorbic acid and epinephrine is large enough (190 mV) to permit simultaneous determination of both epinephrine and ascorbic acid in physiological pH 7.4 conditions using the Au‐cys‐FeOCPc electrode. Au‐cys‐FeOCPc electrode was successfully used for the determination of epinephrine in epinephrine hydrochloric acid injection with recovery of ca. 98.4%.  相似文献   

10.
To the determination of trace amount of Cd(II) present in food and water samples, a selective and extractive spectrophotometric method were developed with 2,6‐diacetylpyridine‐bis‐4‐phenyl‐3‐thiosemicarbazone as a complexing agent. The yellowish orange colored metal complex, Cd(II)‐2,6‐DAPBPTSC with 1:1 (M:L) composition was extracted in to cyclohexanol at pH 9.5 and was shows maximum absorbance at λmax 390 nm. This method obeys Beer's law in the range of 1.12‐11.25 ppm with 0.972 correlation coefficient of Cd(II)‐2,6‐DAPBPTSC complex, which is indicates linearity between the two variables. The molar absorptivity and sandell's sensitivity were found to be 6.088 × 104 L mol?1 cm?1 and 0.0018 μg cm?2, respectively. The instability constant calculated from Asmus' method (1.447 × 10?4)at room temperature. The precision and accuracy of the method were checked by relative standard deviation (n = 5), 0.929 and its detection limit, 0.0060 μg mL?1. The interfering effects of various cations and anions were also studied. The proposed method was successfully applied to the determination of Cd(II) in foods and water samples, and was evaluated its performance in terms of Student ‘t’ test and Variance ‘f’ test, which indicates the significance of present method. The inter comparison of the experimental values, using atomic absorption spectrometer (AAS), was also repoted.  相似文献   

11.
A new poly(acrylamidrazone-hydrazide) chelating fiber has been synthesized using polyacrylonitrile fiber as a starting material. An ICP-OES method for applying the fiber to preconcentrate and separate trace Au(III) and Pd(IV) ions in solution has been established. The experiments show that 8 ng/ml Au(III) and 6 ng/ml Pd(IV) in 1000 ml of solution can be enriched quantitatively by the fiber column at a flow rate of 12 ml/min at pH 2. These ions can be desorbed quantitatively with 10 ml of 2.5% CS(NH2)2 + 6% H2SO4 containing 0.2% Fe(II) from the column at an elution rate of 6 ml/min. A fiber treated with 12M HCl or 15M HNO3 can be re-used 10 times with above 95% recoveries of Au(III) and Pd(IV), and 120–800-fold excesses of Cu(II), Mn(II), Fe(III), Al(III), Ni(II), Mg(II) and Ca(II) ions cause little interference. The RSDs are 2.0% for 8 ng/ml Au and 3.5% for 6 ng/ml Pd. The recovery of added standard in a solution sample from a metal smelter is 96.2% for Au and 100% for Pd, and the content of each ion in the sample determined by the method is in agreement with the analysed value from the smelter laboratory.  相似文献   

12.
We report on the use of a water-insoluble pillar[5]arene derivative carrying ten carboxy groups as an adsorbent, packed in a glass microcolumn, for the separation and preconcentration of trace gold (Au) and palladium (Pd). Sample pH, sample loading time, sample flow rate, eluent concentration, and eluent flow rate were optimized. Effects of potentially interfering metal ions that are commonly encountered in soil were also investigated. Under the optimized conditions, the enrichment factors for Au and Pd are 12 and 16, respectively. Flow injection in combination with flame atomic absorption spectrometry was then applied for the quantitation of the elements. The analytical range is linear in the range between 0.05 and 1 μg mL?1 for both Au and Pd. The limits of detection are 15.9 μg L?1 for Au and 16.0 μg L?1 for Pd, with relative standard deviations (for n?=?11) of 0.7 % (Au) and 0.4 % (Pd), respectively. The accuracy of the method was validated using certified reference materials (coal and ash) and geological samples. Figure
A pillar[5]arene derivative carrying ten carboxy groups was used for the adsorption of Au(III) and Pd(II) ions which then were determined by flow-injection FAAS. After optimization, the method was successfully applied to the determination of these ions in certified reference materials and geological samples  相似文献   

13.
A novel core–shell magnetic nano‐adsorbent with surface molecularly imprinted polymer coating was fabricated and then applied to dispersive micro‐solid‐phase extraction followed by determination of rhodamine 6G using high‐performance liquid chromatography. The molecularly imprinted polymer coating was prepared by copolymerization of dopamine and m‐aminophenylboronic acid (functional monomers), in the presence of rhodamine 6G (template). The selection of the suitable functional monomers was based on the interaction between different monomers and the template using the density functional theory. The ratios of the monomers to template were further optimized by an OA9 (34) orthogonal array design. The binding performances of the adsorbent were evaluated by static, kinetic, and selective adsorption experiments. The results reveal that the adsorbent possesses remarkable affinity and binding specificity for rhodamine 6G because of the enhanced Lewis acid‐base interaction between the B(Ш) embedded in the imprinted cavities and the template. The nano‐adsorbent was successfully applied to dispersive micro‐solid‐phase extraction coupled to high‐performance liquid chromatography for the trace determination of rhodamine 6G in samples with a detection limit of 2.7 nmol/L. Spiked recoveries ranged from 93.0–99.1, 89.5–92.7, and 86.9–105% in river water, matrimony vine and paprika samples, respectively, with relative standard deviations of less than 4.3%.  相似文献   

14.
The originality on the high efficiency of murexide modified halloysite nanotubes as a new adsorbent of solid phase extraction has been reported to preconcentrate and separate Pd(II) in solution samples. The new adsorbent was confirmed by Fourier transformed infrared spectra, X-ray diffraction, scanning electron microscope, transmission electron microscope and N2 adsorption–desorption isotherms. Effective preconcentration conditions of analyte were examined using column procedures prior to detection by inductively coupled plasma-optical emission spectrometry (ICP-OES). The effects of pH, the amount of adsorbent, the sample flow rate and volume, the elution condition and the interfering ions were optimized in detail. Under the optimized conditions, Pd(II) could be retained on the column at pH 1.0 and quantitatively eluted by 2.5 mL of 0.01 mol L?1 HCl–3% thiourea solution at a flow rate of 2.0 mL min?1. The analysis time was 5 min. An enrichment factor of 120 was accomplished. Common interfering ions did not interfere in both separation and determination. The maximum adsorption capacity of the adsorbent at optimum conditions was found to be 42.86 mg g?1 for Pd(II).The detection limit (3σ) of the method was 0.29 ng mL?1, and the relative standard deviation (RSD) was 3.1% (n = 11). The method was validated using certified reference material, and has been applied for the determination of trace Pd(II) in actual samples with satisfactory results.  相似文献   

15.
Palm leaf ash was characterized and used as low‐cost adsorbent for solid‐phase extraction and preconcentration of bisphenol A (BPA) in real water samples. Analysis of BPA was carried out using HPLC involving Eurospher 100–5‐C18 (25 cm × 4.5 mm, particle size 5 μm) column and water–acetonitrile (40:60, v/v) as mobile phase. The adsorption was achieved quantitatively at a pH of 6 with elution by 3 mL acetonitrile. The limits of detection and enrichment factor were 0.02 μg L?1 and 333, respectively. Under optimum conditions the relative standard deviation (RSD) was 2% (n = 10). Comparison of qualification criteria of presented preconcentration procedure with other research indicated that palm leaf ash adsorbent was better than many of the adsorbents in terms of cost and reusability. Also, the limit of detection, precision and enrichment factor were comparable and even better than the previously reported methods. Finally, the efficiency of method was computed by determination of trace amounts of BPA in sea, river, mineral and tap waters with recoveries of 93.3–105.5% and RSDs of 0.61–3.12%.. Briefly, the developed solid‐phase extraction and Preparative layer chromatography (PLC) methods may be used for bisphenol A monitoring in any environmental water sample. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
A silica gel based sorbent containing rhodanine as functional group (RDSG) was prepared. Its adsorption and separation characteristics for Ag(I), Au(III) and Pd(II) were studied by flow-injection (FI) on-line preconcentration. Influence of different experimental parameters such as acidity, eluent, co-existing ions were investigated. Trace amounts of Ag, Au and Pd could be efficiently adsorbed by rhodanine-bonded silica gel from acidic solution and eluted with thiourea solution. Common co-existing ions exhibited virtually no interference to the preconcentration and determination. The adsorption capacity of RDSG was 0.0352, 0.107 and 0.122 mmol/g for Ag, Au and Pd, respectively. Detection limits of 0.004, 0.022 and 0.019 μg/mL for Ag, Au and Pd, respectively, were achieved with a sampling time of 60 s at a flow rate of 5.0 mL/min. The relative standard deviation were 0.5%, 0.9% and 1.7% for 0.040 μg/mL Ag, 0.200 μg/mL Au and 0.300 μg/¶mL Pd. The sorption property did not change after 1000 cycles of sorption-desorption. The contents of Ag and Au in three national certified ore samples and Pd in a secondary nickel alloy, an anode slime and a CoCl2 electrolytic solution were determined. The results showed good agreement with the certified values.  相似文献   

17.
The sorption behavior of a newly synthesized silica gel sorbent with thioetheric sites (STS) towards microgram levels of Au(III), Pt(IV) and Pd(II) was studied. Au(III) is quantitatively (>95%) sorbed in the pH region of 1–9. The sorption of Pt(IV) starts at pH 1 and does not exceed 25% in the entire pH region examined. The sorption of Pd(II) starts at pH 7 and reaches 80% at pH 9. The sorption of Au(III) on STS at pH 1 is not affected by milligram amounts of Ni(II), Zn(II), Fe(III), Cu(II), Pb(II), Cd(II) or Co(II). Au(III) is quantitatively eluted with a 5% aqueous solution of thiourea. The adsorption capacity of STS towards Au(III) is 195 mg g−1. The detection limit (DL) of Au(III) (3σ, n = 9) is 25 ng mL−1. The RSD at a level of 10 × DL is about 2%. Solid-phase extraction of trace amounts of Au(III) on the STS sorbent, followed by its flame AAS determination in the eluate was applied to the determination of gold in geological samples. The results obtained for the gold content in the samples were in good agreement with those of the ICP-AES analysis.  相似文献   

18.
Amidinothiourea immobilized glass bead (AGB) was applied as the microcolumn packing for the flow-injection online separation and preconcentration of Au(III) and Pd(II) coupled with FAAS determination. The peak-area absorbance (A) and the peak-height absorbance (H) were all used as the evaluating modes. Au(III) and Pd(II) in 0.50 M HCl solution were absorbed onto AGB completely and then eluted into AAS with thiourea solution. Base metal ions with a concentration of 2.0 mg/mL and anions with a concentration of 20.0 mg/mL caused no interference in the determination of Au(III) and Pd(II). The LODs of Au(III) and Pd(II) for a preconcentration time of 60 s with a sampling flow rate of 5.0 mL/min for 0.20 μg/mL of Au(III) and 0.30 μg/mL of Pd(II) were 2.7 and 6.5 ng/mL with the H mode and 4.6 and 10.2 ng/mL with the A mode, respectively. The RSD of seven replicate determinations of 0.20 μg/mL of Au(III) and 0.30 μg/mL of Pd(II) were 0.018 and 0.024 for the H mode and 0.013 and 0.018 for the A mode, respectively. The method was successfully applied to the determination of Au and Pd in real samples. __________ From Zhurnal Analiticheskoi Khimii, Vol. 60, No. 10, 2005, pp. 1023–1029. Original English Text Copyright ? 2005 by Liu, Pu, Su. The text was submitted by the authors in English.  相似文献   

19.
Regioregular poly(3‐octylthiophene)s were synthesized through a palladium‐catalyzed Suzuki polycondensation of 2‐(5‐iodo‐4‐octyl‐2‐thienyl)‐4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolane. The effects of the palladium catalyst {tetrakis(triphenylphosphine)palladium(0) [Pd(PPh3)4], palladium(II) acetate [Pd(OAc)2], [1, 1′‐bis(diphenylphosphino)ferrocene]dichloropalladium(II) [Pd(dppf)Cl2], tris(dibenzylideneacetone)dipalladium(0), or bis(triphenylphosphine)palladium(II) dichloride [Pd(PPh3)2Cl2]} and the reaction conditions (bases and solvents) were investigated. NMR spectroscopy revealed that poly(3‐octylthiophene)s prepared via this route were essentially regioregular. According to size exclusion chromatography, the highest molecular weights were obtained with in situ generated Pd(PPh3)4 and tetrakis(tri‐o‐tolylphosphine]palladium(0) {Pd[P(o‐Tol)3]4} catalysts or more reactive, phosphine‐free Pd(OAc)2. Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry was used to analyze end groups and allowed the determination of some mechanistic aspects of the Suzuki polycondensation. The polymers were commonly terminated with hydrogen or iodine as a result of deboronation and some deiodination. Pd(PPh3)4, Pd(PPh3)2Cl2, and Pd[P(o‐Tol)3]4 induced aryl–aryl exchange reactions with the palladium center and resulted in some chains having phenyl‐ and o‐tolyl‐capped chain ends. Pd(dppf)Cl2 yielded only one type of chain, and it had hydrogen end groups. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1454–1462, 2005  相似文献   

20.
Copper(II)‐ion imprinted silica gel (Cu‐IISG) sorbent was synthesized by surface imprinting technique and was employed as a selective solid‐phase extraction material for on‐line preconcentration and separation, then coupled with atomic absorption spectrometry (AAS) determination of Cu(II). The higher selectivity coefficient of Cu‐IISG for Cu(II) in the presence of competitive ions such as Fe(III), Ni(II) and Zn(II) was above 411, which was 35 times of NISG. The static adsorption capacity and dynamic adsorption capacity were 41.11 mg g?1 and 16.20 mg g?1, respectively. The Cu‐IISG offered a fast kinetics for the adsorption and desorption of Cu(II), which can be used for on‐line preconcentration and detection. Two certified reference materials of GBW07301a sediment and GBW07401 soil were analyzed and the determined values were in a good agreement with the certified values. The developed method was also successfully applied to the determination of trace copper in tea leaf with satisfactory results (recovery between 96.3% and 102.3%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号