首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infrared photodissociation spectra of Al(+)(CH(3)OH)(n) (n = 1-4) and Al(+)(CH(3)OH)(n)-Ar (n = 1-3) were measured in the OH stretching region, 3000-3800 cm(-1). For n = 1 and 2, sharp absorption bands were observed in the free OH stretching region, all of which were well reproduced by the spectra calculated for the solvated-type geometry with no hydrogen bond. For n = 3 and 4, there were broad vibrational bands in the energy region of hydrogen-bonded OH stretching vibrations, 3000-3500 cm(-1). Energies of possible isomers for the Al(+)(CH(3)OH)(3),4 ions with hydrogen bonds were calculated in order to assign these bands. It was found that the third and fourth methanol molecules form hydrogen bonds with methanol molecules in the first solvation shell, rather than a direct bonding with the Al(+) ion. For the Al(+)(CH(3)OH)(n) clusters with n = 1-4, we obtained no evidence of the insertion reaction, which occurs in Al(+)(H(2)O)(n). One possible explanation of the difference between these two systems is that the potential energy barriers between the solvated and inserted isomers in the Al(+)(CH(3)OH)(n) system is too high to form the inserted-type isomers.  相似文献   

2.
N_2H_4-CH_3OH氢键团簇体系的从头计算   总被引:2,自引:0,他引:2  
用从头计算法研究了 (N2 H4-CH3OH)氢键团簇体系。分别在HF/6 31G 和HF/6 31G 水平上对它们的中性和离子团簇进行几何全优化 ,得到了 3种中性混合团簇稳定构型和离子混合团簇稳定构型 ,并对其能量和稳定性进行了比较。讨论了 3种不同构型离子团簇可能的解离通道。给出了质子化混合团簇的稳定构型 ,并对其可能的解离通道进行了讨论。文中最后计算出N2 H4,CH3OH ,(N2 H4-CH3OH)团簇的质子亲和能 (PA) ,分别为 :2 0 6.7kcal/mol,1 78.3kcal/mol,2 2 7.5kcal/mol,其中质子亲和能PAcalc[N2 H4]与实验值PAexp[N2 H4]=2 0 4 .8kcal/mol符合得很好。  相似文献   

3.
Phosphorus functionalized trimeric alanine compounds (l)- and (d)-P(CH(2)NHCH(CH(3))COOH)(3) 2 are prepared in 90% yields by the Mannich reaction of Tris(hydroxymethyl)phosphine 1 with (l)- or (d)- Alanine in aqueous media. The hydration properties of (l)-2 and (d)-2 in water and water-methanol mixtures are described. The crystal structure analysis of (l)-2.4H(2)O, reveals that the alanine molecules pack to form two-dimensional bilayers running parallel to (001). The layered structural motif depicts two closely packed monolayers of 2 each oriented with its phosphorus atoms projected at the center of the bilayer and adjacent monolayers are held together by hydrogen bonds between amine and carboxylate groups. The water bilayers are juxtaposed with the H-bonded alanine trimers leading to 18-membered (H(2)O)(18) water rings. Exposure of aqueous solution of (l)-2 and (d)-2 to methanol vapors resulted in closely packed (l)-2 and (d)-2 solvated with mixed water-methanol (H(2)O)(15)(CH(3)OH)(3) clusters. The O-O distances in the mixed methanol-water clusters of (l)-2.3H(2)O.CH(3)OH and (d)-2.3H(2)O.CH(3)OH (O-O(average) = 2.857 A) are nearly identical to the O-O distance observed in the supramolecular (H(2)O)(18) water structure (O-O(average) = 2.859 A) implying the retention of the hydrogen bonded structure in water despite the accommodation of hydrophobic methanol groups within the supramolecular (H(2)O)(15)(CH(3)OH)(3) framework. The O-O distances in (l)-2.3H(2)O.CH(3)OH and (d)-2.3H(2)O.CH(3)OH and in (H(2)O)(18) are very close to the O-O distance reported for liquid water (2.85 A).  相似文献   

4.
The binding energies of the first 5 H2O molecules to c-C3H3+ were determined by equilibrium measurements. The measured binding energies of the hydrated clusters of 9-12 kcal/mol are typical of carbon-based CH+...X hydrogen bonds. The ion solvation with the more polar CH3CN molecules results in stronger bonds consistent with the increased ion-dipole interaction. Ab initio calculations show that the lowest energy isomer of the c-C3H3+(H2O)4 cluster consists of a cyclic water tetramer interacting with the c-C3H3+ ion, which suggests the presence of orientational restraint of the water molecules consistent with the observed large entropy loss. The c-C3H3+ ion is deprotonated by 3 or more H2O molecules, driven energetically by the association of the solvent molecules to form strongly hydrogen bonded (H2O)nH+ clusters. The kinetics of the associative proton transfer (APT) reaction C3H3+ + nH2O --> (H2O)nH+ + C3H2* exhibits an unusually steep negative temperature coefficient of k = cT(-63+/-4) (or activation energy of -37 +/- 1 kcal mol(-1)). The behavior of the C3H3+/water system is exactly analogous to the benzene+*/water system, suggesting that the mechanism, kinetics and large negative temperature coefficients may be general to multibody APT reactions. These reactions can become fast at low temperatures, allowing ionized polycyclic aromatics to initiate ice formation in cold astrochemical environments.  相似文献   

5.
Density functional theory (DFT) calculations of protonated methanol-water mixed clusters, H (+)(MeOH) 1(H 2O) n ( n = 1-8), were extensively carried out to analyze the hydrogen bond structures of the clusters. Various structural isomers were energy optimized, and their relative energies with zero point energy corrections and temperature dependence of the free energies were examined. Coexistence of different morphological isomers was suggested. Infrared spectra were simulated on the basis of the optimized structures. The infrared spectra were also experimentally measured for n = 3-9 in the OH stretching vibrational region. The observed broad bands in the hydrogen-bonded OH stretch region were assigned in comparison with the simulations. From the DFT calculations, the preferential proton location was also investigated. Clear correlations between the excess proton location and the cluster morphology were found.  相似文献   

6.
To understand the autoionization of pure water and the solvation of ammonia in water, we investigated the undissociated and dissociated (ion-pair) structures of (H2O) n and NH3(H2O)n-1 (n = 5, 8, 9, 21) using density functional theory (DFT) and second order Moller-Plesset perturbation theory (MP2). The stability, thermodynamic properties, and infrared spectra were also studied. The dissociated (ion-pair) form of the clusters tends to favor the solvent-separated ion-pair of H3O+/NH4+ and OH-. As for the NH3(H2O)20 cluster, the undissociated structure has the internal conformation, in contrast to the surface conformation for the (H2O)21 cluster, whereas the dissociated structure of NH3(H2O)20 has the surface conformation. As the cluster size of (H2O)n/NH3(H2O)n-1 increases, the difference in standard free energy between undissociated and dissociated (ion-pair) clusters is asymptotically well corroborated with the experimental free energy change at infinite dilution of H3O+/NH4+ and OH-. The predicted NH and OH stretching frequencies of the undissociated and dissociated (ion-pair) clusters are discussed.  相似文献   

7.
Hydroperoxide anion (HOO(-)), the conjugate base of hydrogen peroxide (HOOH), has been relatively little studied despite the importance of HOOH in commercial processes, atmospheric science, and biology. The anion has been shown to exist as a stable species in alkaline water. This project explored the structure of gas phase (HOO(-))(H(2)O)(n) clusters and identified the lowest energy configurations for n ≤ 8 at the B3LYP/6-311++G** level of theory and for n ≤ 6 at the MP2/aug-cc-pVTZ level of theory. As a start toward understanding equilibration between HOO(-) and HOOH in an alkaline environment, (HOOH)(OH(-))(H(2)O)(n-1) clusters were likewise examined, and the lowest energy configurations were determined for n ≤ 8 (B3LYP/6-311++G**) and n ≤ 6 (MP2/aug-cc-pVTZ). Some studies were also done for n = 20. The two species have very different solvation behaviors. In low energy (HOOH)(OH(-))(H(2)O)(n-1) clusters, HOOH sits on the surface of the cluster, is 4-coordinated (each O is donor once and acceptor once), and donates to the hydroxide ion. In contrast, in low energy (HOO(-))(H(2)O)(n) clusters, (HOO(-)) takes a position in the cluster center surrounded on all sides by water molecules, and its optimum coordination number appears to be 7 (one O is donor-acceptor-acceptor while the other is a 4-fold acceptor). For n ≤ 6 the lowest (HOOH)(OH(-))(H(2)O)(n-1) cluster lies 1.0-2.1 kcal/mol below the lowest (HOO(-))(H(2)O)(n) cluster, but the lowest clusters found for n = 20 favor (HOO(-))(H(2)O)(20). The results suggest that ambient water could act as a substantial kinetic brake that slows equilibration between (HOOH)(OH(-)) and (HOO(-))(H(2)O) because extensive rearrangement of solvation shells is necessary to restabilize either species after proton transfer.  相似文献   

8.
Calculations at the CCSD(T)/aug-cc-pVDZ//B3LYP/6-31G(d) level of theory indicate that the anions -CCCO2H and HCCCO2(-) are stable species in their singlet states. Upon collision-induced, vertical one-electron oxidation under neutralisation-reionisation (-NR+) conditions, they produce the neutral molecules CCCO2H and HCCCO2, respectively. Some of the CCCO2H neutrals should be stable for the duration of the neutralisation-reionisation experiment (10(-6) s), while others will dissociate to CCCO and OH (requires 125 kJ mol(-1)). In contrast, neutral HCCCO2 is expected to be much less stable, and dissociate to HCC and CO2 (37 kJ mol(-1)). Neither CCCO2H nor HCCCO2 is expected to interconvert, or to rearrange to other isomers. The anions -CCCO2H and HCCCO2(-) have been formed in the ion source of the mass spectrometer by the reactions between (CH3)3Si-C[triple bond]C-CO2H and F- and HC[triple bond]C-CO2Si(CH3)3 and F-, respectively. The -NR+ spectrum of -CCCO2H shows a recovery signal and also indicates that the lowest energy dissociation pathway of neutral CCCO2H corresponds to the loss of OH. The -NR+ spectrum of HCCCO2 displays little or no recovery signal, and the spectrum is dominated by the [CO2]+ ion. The experimental observations are in agreement with the predictions of the extensive theoretical studies.  相似文献   

9.
We have theoretically investigated how the low-energy conformers of the neutral and the zwitterionic forms of glycine as well as methylcarbamic acid are stabilized by the presence water. The MP2/6-311++G(d,p) method was utilized to conduct calculations on glycine and methylcarbamic acid in both isolated clusters and in clusters embedded in the conductor-like polarizable continuum model (C-PCM), where the clusters explicitly contain between one and ten water molecules. The neutral forms of glycine and methylcarbamic acid were found to have similar hydration energies, whereas the neutral methylcarbamic acid was determined to be approximately 32 kJ mol(-1) more stable than the neutral glycine in the isolated clusters and 30 kJ mol(-1) more stable in the C-PCM embedded clusters. Both the number and strength of the hydrogen bonding interactions between water and the zwitterions drive the stability. This lowers the relative energy of the glycine zwitterion from 50 kJ mol(-1) above neutral glycine, when there are two water molecules in the clusters to 11 kJ mol(-1) below for the clusters containing ten water molecules. For the methylcarbamic acid clusters with two water molecules, the zwitterion is 51 kJ mol(-1) higher in energy than the neutral form, but it remains 13 kJ mol(-1) above the neutral methylcarbamic acid in the clusters containing ten water molecules. When the bulk water environment is simulated by the C-PCM calculations, we find both the methylcarbamic acid and glycine zwitterionic forms have similar energies at 20 kJ mol(-1) above the neutral methylcarbamic acid energy and 10 kJ mol(-1) lower than the neutral glycine energy. Although neither methylcarbamic acid nor glycine have been detected in the interstellar medium yet, our findings indicate that methylcarbamic acid is the more stable product from methylamine and carbon dioxide reactions in a water ice. This suggests that methylcarbamic acid likely plays a role in the intermediate steps if glycine is formed in the interstellar medium.  相似文献   

10.
Pyridine containing water clusters, H(+)(pyridine)(m)(H(2)O)(n), have been studied both experimentally by a quadrupole time-of-flight mass spectrometer and by quantum chemical calculations. In the experiments, H(+)(pyridine)(m)(H(2)O)(n) with m = 1-4 and n = 0-80 are observed. For the cluster distributions observed, there are no magic numbers, neither in the abundance spectra, nor in the evaporation spectra from size selected clusters. Experiments with size-selected clusters H(+)(pyridine)(m)(H(2)O)(n), with m = 0-3, reacting with D(2)O at a center-of-mass energy of 0.1 eV were also performed. The cross-sections for H/D isotope exchange depend mainly on the number of water molecules in the cluster and not on the number of pyridine molecules. Clusters having only one pyridine molecule undergo D(2)O/H(2)O ligand exchange, while H(+)(pyridine)(m)(H(2)O)(n), with m = 2, 3, exhibit significant H/D scrambling. These results are rationalized by quantum chemical calculations (B3LYP and MP2) for H(+)(pyridine)(1)(H(2)O)(n) and H(+)(pyridine)(2)(H(2)O)(n), with n = 1-6. In clusters containing one pyridine, the water molecules form an interconnected network of hydrogen bonds associated with the pyridinium ion via a single hydrogen bond. For clusters containing two pyridines, the two pyridine molecules are completely separated by the water molecules, with each pyridine being positioned diametrically opposite within the cluster. In agreement with experimental observations, these calculations suggest a "see-saw mechanism" for pendular proton transfer between the two pyridines in H(+)(pyridine)(2)(H(2)O)(n) clusters.  相似文献   

11.
The acidity of the isostructural H-SSZ-13 and H-SAPO-34 has been investigated by transmission FTIR spectroscopy using H2O and CH3OH as molecular probes. Interactions between the zeolitic samples and the probe molecules led to perturbations and proton transfers directly related to the acidity of the materials. The entire set of acidic sites in H-SSZ-13 interacts with H2O and CH3OH to give H-bonded adducts or protonated species. H3O+ is not formed in appreciable amounts upon H2O adsorption on H-SSZ-13, but at high coverages H2O generates clusters that have a proton affinity sufficiently high to abstract protons from the zeolite framework. Parallel experiments carried out for H-SAPO-34 showed that the H2O clusters abstract protons from Br?nsted sites only to a minor extent. Moving to CH3OH, even if it has a higher proton affinity than H2O and should expectingly experience an easier protonation, proton transfer is totally absent in H-SAPO-34 under our set of conditions. The clear evidence of methanol protonation in H-SSZ-13 definitely states the strong acidic character of this material. When irreversibly adsorbed CH3OH is present in H-SSZ-13, an appreciable amount of (CH3)2O is formed upon heating to 573 K. Compared to its SAPO analogue, the present set of data indisputably points to H-SSZ-13 as the strongest Br?nsted acidic material.  相似文献   

12.
To achieve a systematic understanding of the influence of microsolvation on the electron accepting behaviors of nucleobases, the reliable theoretical method (B3LYP/DZP++) has been applied to a comprehensive conformational investigation on the uracil-water complexes U-(H(2)O)(n) (n = 1, 2, 3) in both neutral and anionic forms. For the neutral complexes, the conformers of hydration on the O2 of uracil are energetically favored. However, hydration on the O4 atom of uracil is more stable for the radical anions. The electron structure analysis for the H-bonding patterns reveal that the CH...OH(2) type H-bond exists only for di- and trihydrated uracil complexes in which a water dimer or trimer is involved. The electron density structure analysis and the atoms-in-molecules (AIM) analysis for U-(H(2)O)(n) suggest a threshold value of the bond critical point (BCP) density to justify the CH...OH(2) type H-bond; that is, CH...OH(2) could be considered to be a H-bond only when its BCP density value is equal to or larger than 0.010 au. The positive adiabatic electron affinity (AEA) and vertical detachment energy (VDE) values for the uracil-water complexes suggest that these hydrated uracil anions are stable. Moreover, the average AEA and VDE of U-(H(2)O)(n) increase as the number of the hydration waters increases.  相似文献   

13.
We report studies of supersonically cooled water complexes of m-aminobenzoic acid MABA.(H(2)O)n (n = 1 and 2) using two-color resonantly enhanced multiphoton ionization (REMPI) and UV-UV hole-burning spectroscopy. Density functional theory calculations are also carried out to identify structural minima of water complexes in the ground state. For the most stable isomers of both complexes, water molecules bind to the pocket of the carboxyl group in a cyclic hydrogen bond network. Vibrational frequency calculations for the first electronically excited state (S(1)) of these isomers agree well with the experimental observation. The addition of water molecules has a major impact on the normal mode that involves local motion of the carboxyl group, while negligible effects are observed for other normal modes. On the basis of the hole-burning experiment, two major isomers for each complex are identified, corresponding to the two conformers of the bare compound. Compared with the other two isomers of aminobenzoic acid, the red shifts of the origin bands due to water complexation in MABA are considerably larger. Similar to p-aminobenzoic acid and different from o-aminobenzoic acid, the existence of the intermolecular stretching mode is ambiguous in the REMPI spectrum of MABA.(H(2)O)n.  相似文献   

14.
IR-UV double resonance spectroscopy and ab initio calculations were employed to investigate the structures and vibrations of the aromatic amino acid, L-phenylalanine-(H(2)O)(n) clusters formed in a supersonic free jet. Our results indicate that up to three water molecules are preferentially bound to both the carbonyl oxygen and the carboxyl hydrogen of L-phenylalanine (L-Phe) in a bridged hydrogen-bonded conformation. As the number of water molecules is increased, the bridge becomes longer. Two isomers are found for L-Phe-(H(2)O)(1), and both of them form a cyclic hydrogen-bond between the carboxyl group and the water molecule. In L-Phe-(H(2)O)(2), only one isomer was identified, in which two water molecules form extended cyclic hydrogen bonds with the carboxyl group. In the calculated structure of L-Phe-(H(2)O)(3) the bridge of water molecules becomes larger and exhibits an extended hydrogen-bond to the pi-system. Finally, in isolated L-Phe, the D conformer was found to be the most stable conformer by the experiment and by the ab initio calculation.  相似文献   

15.
First principles molecular dynamics simulations are carried out to investigate the solvation of an excess electron and a lithium atom in mixed water-ammonia cluster (H(2)O)(5)NH(3) at a finite temperature of 150 K. Both [(H(2)O)(5)NH(3)](-) and Li(H(2)O)(5)NH(3) clusters are seen to display substantial hydrogen bond dynamics due to thermal motion leading to many different isomeric structures. Also, the structures of these two clusters are found to be very different from each other and also very different from the corresponding neutral cluster without any excess electron or the metal atom. Spontaneous ionization of Li atom occurs in the case of Li(H(2)O)(5)NH(3). The spatial distribution of the singly occupied molecular orbital shows where and how the excess (or free) electron is primarily localized in these clusters. The populations of single acceptor (A), double acceptor (AA), and free (NIL) type water and ammonia molecules are found to be significantly high. The dangling hydrogens of these type of water or ammonia molecules are found to primarily capture the free electron. It is also found that the free electron binding motifs evolve with time due to thermal fluctuations and the vertical detachment energy of [(H(2)O)(5)NH(3)](-) and vertical ionization energy of Li(H(2)O)(5)NH(3) also change with time along the simulation trajectories. Assignments of the observed peaks in the vibrational power spectra are done and we found a one to one correlation between the time-averaged populations of water and ammonia molecules at different H-bonding sites with the various peaks of power spectra. The frequency-time correlation functions of OH stretch vibrational frequencies of these clusters are also calculated and their decay profiles are analyzed in terms of the dynamics of hydrogen bonded and dangling OH modes. It is found that the hydrogen bond lifetimes in these clusters are almost five to six times longer than that of pure liquid water at room temperature.  相似文献   

16.
The mechanism for the atmospheric oxidation of methanesulfinic acid (MSIA) has been studied. This is the first theoretical study of the reaction between MSIA and the OH radical. All the possible channels in this reaction have been studied theoretically, and their corresponding rate constants have been evaluated under the variational transition-state theory (VTST) formalism. Two different products can be formed: the CH3S(O)2 radical (which had been experimentally proposed as the only one), and sulfurous acid (H2SO3). The CH3S(O)2 radical can be formed directly or can form via an intermediate adduct, which yields to the radical through the elimination of a water molecule. For the first time, it is theoretically demonstrated that SO2 is formed in the addition channel of the DMS + OH reaction. The consequences of this result in the interpretation of the T-dependence of the SO4(2-)/MSA (methanesulfonic acid) quocient are analyzed. The competition between the unimolecular dissociation of the CH3S(O)2 radical and OH-addition to yield MSA is proposed as one of the possible multiple branching points (along the DMS + OH degradation scheme) influencing the T-dependence of the SO4(2-)/MSA relation.  相似文献   

17.
INDO方法研究了C70R2(R=OH,CH3)4种异构体的结构和稳定性,表明1,9-C70(OH)2比7,8-C70(OH)2稳定,两者能量差为38.5kJ/mol,而7,8-C70(CH3)2比1,9-C70(CH3)2能量低23.0kJ/mol.以优化构型为基础,对C70R2(R=OH,CH3)的电子光谱进行了理论预测.  相似文献   

18.
The energetics of the phenolic O-H bond in a series of 2- and 4-HOC 6H 4C(O)Y (Y = H, CH3, CH 2CH=CH2, C[triple bond]CH, CH2F, NH2, NHCH 3, NO2, OH, OCH3, OCN, CN, F, Cl, SH, and SCH3) compounds and of the intramolecular O...H hydrogen bond in 2-HOC 6H 4C(O)Y, was investigated by using a combination of experimental and theoretical methods. The standard molar enthalpies of formation of 2-hydroxybenzaldehyde (2HBA), 4-hydroxybenzaldehyde (4HBA), 2'-hydroxyacetophenone (2HAP), 2-hydroxybenzamide (2HBM), and 4-hydroxybenzamide (4HBM), at 298.15 K, were determined by micro- or macrocombustion calorimetry. The corresponding enthalpies of vaporization or sublimation were also measured by Calvet drop-calorimetry and Knudsen effusion measurements. The combination of the obtained experimental data led to Delta f H m (o)(2HBA, g) = -238.3 +/- 2.5 kJ.mol (-1), DeltafHm(o)(4HBA, g) = -220.3 +/- 2.0 kJ.mol(-1), Delta f H m (o)(2HAP, g) = -291.8 +/- 2.1 kJ.mol(-1), DeltafHm(o)(2HBM, g) = -304.8 +/- 1.5 kJ.mol (-1), and DeltafHm(o) (4HBM, g) = -278.4 +/- 2.4 kJ.mol (-1). These values, were used to assess the predictions of the B3LYP/6-31G(d,p), B3LYP/6-311+G(d,p), B3LYP/aug-cc-pVDZ, B3P86/6-31G(d,p), B3P86/6-311+G(d,p), B3P86/aug-cc-pVDZ, and CBS-QB3 methods, for the enthalpies of a series of isodesmic gas phase reactions. In general, the CBS-QB3 method was able to reproduce the experimental enthalpies of reaction within their uncertainties. The B3LYP/6-311+G(d,p) method, with a slightly poorer accuracy than the CBS-QB3 approach, achieved the best performance of the tested DFT models. It was further used to analyze the trends of the intramolecular O...H hydrogen bond in 2-HOC 6H 4C(O)Y evaluated by the ortho-para method and to compare the energetics of the phenolic O-H bond in 2- and 4-HOC 6H 4C(O)Y compounds. It was concluded that the O-H bond "strength" is systematically larger for 2-hydroxybenzoyl than for the corresponding 4-hydroxybenzoyl isomers mainly due to the presence of the intramolecular O...H hydrogen bond in the 2-isomers. The observed differences are, however, significantly dependent on the nature of the substituent Y, in particular, when an intramolecular H-bond can be present in the radical obtained upon cleavage of the O-H bond.  相似文献   

19.
20.
The reactions of SO3 with H, O, and OH radicals have been investigated by ab initio calculations. For the SO3 + H reaction (1), the lowest energy pathway involves initial formation of HSO3 and rearrangement to HOSO2, followed by dissociation to OH + SO2. The reaction is fast, with k(1) = 8.4 x 10(9)T(1.22) exp(-13.9 kJ mol(-1)/RT) cm(3) mol(-1) s(-1) (700-2000 K). The SO3 + O --> SO2 + O2 reaction (2) may proceed on both the triplet and singlet surfaces, but due to a high barrier the reaction is predicted to be slow. The rate constant can be described as k(2) = 2.8 x 10(4)T(2.57) exp(-122.3 kJ mol(-1)/RT) cm(3) mol(-1) s(-1) for T > 1000 K. The SO3 + OH reaction to form SO2 + HO2 (3) proceeds by direct abstraction but is comparatively slow, with k(3) = 4.8 x 10(4)T(2.46) exp(-114.1 kJ mol(-) 1/RT) cm(3) mol(-1) s(-1) (800-2000 K). The revised rate constants and detailed reaction mechanism are consistent with experimental data from batch reactors, flow reactors, and laminar flames on oxidation of SO2 to SO3. The SO3 + O reaction is found to be insignificant during most conditions of interest; even in lean flames, SO3 + H is the major consumption reaction for SO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号