首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
p16基因甲基化的芯片定量检测   总被引:3,自引:0,他引:3  
p16基因的失活与多种肿瘤相关,但p16基因缺失率较低,突变更为罕见,p16基因启动子区CpG岛甲基化与其蛋白表达密切相关.DNA甲基化已成为目前研究的热点,现有的技术包括:Southernblot法、限制性内切酶-PCR法、DNA测序法、甲基化特异性PCR(MSP)、  相似文献   

2.
DNA hypermethylation of CpG islands plays an important role in gene regulation during cancer development. Many techniques have been developed to detect global DNA methylation in cancer cells compared to normal tissues. This knowledge helps us to better understand cancer progression and also aids in the development of new biomarker for early cancer detection. New prognostic tools for monitoring drug efficacy during cancer treatment can also be developed. In this review, we will examine the different techniques that have been used to study DNA methylation, as well as the emerging high resolution, high throughput techniques for identification of methylated regions to defining cancer related genes in the cancer methylome.  相似文献   

3.
The importance of epigenetic alterations in the development of various diseases including the cancers has been realized. As epigenetic changes are reversible heritable changes, these can be utilized as an effective strategy for the prevention of cancers. DNA methylation is the most characterized epigenetic mechanism that can be inherited without changing the DNA sequence. Although limited available data suggest that silencing of tumor suppressor genes in ultraviolet (UV) radiation-exposed epidermis leads to photocarcinogenesis and is associated with a network of epigenetic modifications including alterations in DNA methylation, DNA methyltransferases and histone acetylations. Various bioactive dietary components have been shown to protect skin from UV radiation-induced skin tumors in animal models. The role of bioactive dietary components, such as, (-)-epicatechins from green tea and proanthocyanidins from grape seeds has been assessed in chemoprevention of UV-induced skin carcinogenesis and underlying epigenetic mechanism in vitro and in vivo animal models. These bioactive components have the ability to block UV-induced DNA hypermethylation and histone modifications in the skin required for the silencing of tumor suppressor genes (e.g. Cip1/p21, p16(INK4a) ). This information is of importance for understanding the role of epigenetic modulation in UV-induced skin tumor and the chemopreventive mechanism of bioactive dietary components.  相似文献   

4.
MOLECULAR MECHANISMS OF ULTRAVIOLET RADIATION CARCINOGENESIS   总被引:17,自引:0,他引:17  
UV radiation is a potent DNA damaging agent and a known inducer of skin cancer in experimental animals. There is excellent scientific evidence to indicate that most non-melanoma human skin cancers are induced by repeated exposure to sunlight. UV radiation is unique in that it induces DNA damage that differs from the lesions induced by any other carcinogen. The prevalence of skin cancer on sun-exposed body sites in individuals with the inherited disorder XP suggests that defective repair of UV-induced DNA damage can lead to cancer induction. Carcinogenesis in the skin, as elsewhere, is a multistep process in which a series of genetic and epigenetic events leads to the emergence of a clone of cells that have escaped normal growth control mechanisms. The principal candidates that are involved in these events are oncogenes and tumor suppressor genes. Oncogenes display a positive effect on transformation, whereas tumor suppressor genes have an essentially negative effect, blocking transformation. Activated ras oncogenes have been identified in human skin cancers. In most cases, the mutations in the ras oncogenes have been localized to pyrimidine-rich sequences, which indicates that these sites are probably the targets for UV-induced DNA damage and subsequent mutation and transformation. The finding that activation of ras oncogenes in benign and self-regressing keratoacanthomas in both humans and in animals indicates that they play a role in the early stages of carcinogenesis (Corominas et al., 1989; Kumar et al., 1990). Since cancers do not arise immediately after exposure to physical or chemical carcinogens, ras oncogenes must remain latent for long periods of time. Tumor growth and progression into the more malignant stages may require additional events involving activation of other oncogenes or deletion of growth suppressor genes. In addition, amplification of proto-oncogenes or other genes may also be involved in tumor induction or progression. In contrast to the few studies that implicate the involvement of oncogenes in UV carcinogenesis, the role of tumor suppressor genes in UV carcinogenesis is unknown. Since cancer-prone individuals, particularly XP patients, lack one or more repair pathways, one can speculate that DNA repair enzymes would confer susceptibility to both spontaneous and environmentally induced cancers. Another potential candidate that can function as a tumor suppressor gene is the normal c-Ha-ras gene. Spandidos and Wilkie (1988) have shown that the normal c-Ha-ras gene can suppress transformation induced by the mutated ras gene.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
An important reason of cancer proliferation is the change in DNA methylation patterns, characterized by the localized hypermethylation of the promoters of tumor-suppressor genes together with an overall decrease in the level of 5-methylcytosine (5mC). Therefore, identifying the 5mC sites in the promoters is a critical step towards further understanding the diverse functions of DNA methylation in genetic diseases such as cancers and aging. However, most wet-lab experimental techniques are often time consuming and laborious for detecting 5mC sites. In this study, we proposed a deep learning-based approach, called BiLSTM-5mC, for accurately identifying 5mC sites in genome-wide DNA promoters. First, we randomly divided the negative samples into 11 subsets of equal size, one of which can form the balance subset by combining with the positive samples in the same amount. Then, two types of feature vectors encoded by the one-hot method, and the nucleotide property and frequency (NPF) methods were fed into a bidirectional long short-term memory (BiLSTM) network and a full connection layer to train the 22 submodels. Finally, the outputs of these models were integrated to predict 5mC sites by using the majority vote strategy. Our experimental results demonstrated that BiLSTM-5mC outperformed existing methods based on the same independent dataset.  相似文献   

6.
Epigenetic regulation has been linked to the initiation and progression of cancer. Aberrant expression of microRNAs (miRNAs) is one such mechanism that can activate or silence oncogenes (OCGs) and tumor suppressor genes (TSGs) in cells. A growing number of studies suggest that miRNA expression can be regulated by methylation modification, thus triggering cancer development. However, there is no comprehensive in silico study concerning miRNA regulation by direct DNA methylation in cancer. Ovarian serous cystadenocarcinoma (OSC) was therefore chosen as a tumor model for the present work.Twelve batches of OSC data, with at least 35 patient samples in each batch, were obtained from The Cancer Genome Atlas (TCGA) database. The Spearman rank correlation coefficient (SRCC) was used to quantify the correlation between the CpG DNA methylation level and miRNA expression level. Meta-analysis was performed to reduce the effects of biological heterogeneity among different batches. MiRNA-target interactions were also inferred by computing SRCC and meta-analysis to assess the correlation between miRNA expression and cancer-associated gene expression and the interactions were further validated by a query against the miRTarBase database.A total of 26 potential epigenetic-regulated miRNA genes that can target OCGs or TSGs in OSC were found to show biological relevance between DNA methylation and miRNA gene expression. Furthermore, some of the identified DNA-methylated miRNA genes; for instance, the miR-200 family, were previously identified as epigenetic-regulated miRNAs and correlated with poor survival of ovarian cancer. We also found that several miRNA target genes, BTG3, NDN, HTRA3, CDC25A, and HMGA2 were also related to the poor outcomes in ovarian cancer.The present study proposed a systematic strategy to construct highly confident epigenetic-regulated miRNA pathways for OSC. The findings are validated and are in line with the literature. The inclusion of direct DNA methylated miRNA events may offer another layer of explanation that along with genetics can give a better understanding of the carcinogenesis process.  相似文献   

7.
8.
9.
10.
The epimutational event, i.e., ectopic methylation in tumor suppressor genes, can lead to gene silencing, thus promoting prognosis of cancer. The progression of DNA methylation is a cycle of demethylation, de novo methylation, and maintenance methylation. The enzyme responsible for maintenance of methylation status is DNA methyltransferase 1 (DNMT1), the continuous activity of which is required to maintain the pattern of epimutation; thus, its inhibition is a promising strategy for the treatment of cancer. To the best of our knowledge, this study is the first to focus on the recently developed crystal structure of the catalytic site of DNMT1. Here in this study, we have used the crystal structure for the development of non-nucleoside DNMT1 inhibitors using virtual screening (VS), absorption, distribution, metabolism, elimination/toxicology analysis, and molecular docking studies. In this study, VS was carried out on 48,531 natural products to create a subset of lead-like natural products. Three of them were found to form hydrogen bonds with the catalytic site of the DNMT1 (Cys 1226). Thus, this study adumbrates potential lead compounds for treatment of epimutation.  相似文献   

11.
DNA microarray: a high throughput approach for methylation detection   总被引:7,自引:0,他引:7  
We described a DNA microarray-based method combined with bisulphite treatment of DNA and regular PCR to examine hyper-methylation in promoter 1A of APC gene. A set of oligonucleotide probes were designed and immobilized on the aldehyde-coated glass slides for detecting the methylation pattern of 15 selected CpG sites in the region. The methylation status of 30 colorectal tumor samples have been examined by both of methylation-specific PCR (MS-PCR) and the present microarray method. The methylation pattern of the 15 CpG sites for the samples have been obtained with the microarray. A total of 19 samples out of 30 were methylated by microarray, in which five samples cannot be detected by MS-PCR due to the methylated CpG patterns not accordant to the MS-PCR primers. The detecting ratio for methylation of APC gene of colorectal tumor samples increased from 46.7% with MS-PCR to 63.3% with the microarray, which successfully demonstrated that DNA microarray-based method not only can obtained the methylation patterns for the related genes, but also decrease the false-negative results of methylation status by the conventional MS-PCR for the investigated genes.  相似文献   

12.
A small set of gastric adenocarcinomas (9%) harbor Epstein–Barr virus (EBV) DNA within malignant cells, and the virus is not an innocent bystander but rather is intimately linked to pathogenesis and tumor maintenance. Evidence comes from unique genomic features of host DNA, mRNA, microRNA and CpG methylation profiles as revealed by recent comprehensive genomic analysis by The Cancer Genome Atlas Network. Their data show that gastric cancer is not one disease but rather comprises four major classes: EBV-positive, microsatellite instability (MSI), genomically stable and chromosome instability. The EBV-positive class has even more marked CpG methylation than does the MSI class, and viral cancers have a unique pattern of methylation linked to the downregulation of CDKN2A (p16) but not MLH1. EBV-positive cancers often have mutated PIK3CA and ARID1A and an amplified 9p24.1 locus linked to overexpression of JAK2, CD274 (PD-L1) and PDCD1LG2 (PD-L2). Multiple noncoding viral RNAs are highly expressed. Patients who fail standard therapy may qualify for enrollment in clinical trials targeting cancer-related human gene pathways or promoting destruction of infected cells through lytic induction of EBV genes. Genomic tests such as the GastroGenus Gastric Cancer Classifier are available to identify actionable variants in formalin-fixed cancer tissue of affected patients.  相似文献   

13.
Ovarian malignancy is diagnosed in nearly a fourth of a million women internationally every year. Methylation of RASSF1A tumor suppressor gene prompts its inactivation in diseases. In this study, the RASSF1A promoter methylation was detected by methylated-specific PCR and investigated serum RASSF1A protein level through enzyme-linked immunosorbant assay in 160 Egyptian patients with ovarian cancer and 160 healthy controls. The present work proved that there was a higher frequency of RASSF1A methylation and a decrease in its serum level in patients with ovarian cancer compared to controls as well as in the high-grade tumor patients compared to low grade ones and also in advanced ovarian tumor stage compared to early stages. Our study exhibited that RASSF1A promoter hypermethylation and its protein levels may be a reliable and sensitive tool for diagnosing and monitoring of ovarian malignancy patients.  相似文献   

14.
BACKGROUND: Mitomycin C (MC), a DNA cross-linking and alkylating agent, targets guanines in the m5CpG sequence with 2-3-fold preference over guanines in unmethylated CpG. Benzo[a]pyrenediolepoxide (BPDE) and several other aromatic carcinogens form guanine adducts with an identical selectivity for m5CpG, and in certain cancers G to T transversion mutation 'hotspots' in the p53 tumor suppressor gene are more frequent at this sequence than at guanines in other sequences. MC appears suitable to probe the general mechanism of this selectivity. RESULTS: A 162-bp DNA fragment containing C, m5C or f5C (5-fluoro cytosine) at all cytosine positions was cross-linked by MC at guanines in CpG steps. The extent of cross-linking increased in the order f5C < C < m5C. Monoalkylation or cross-linking of duplex 12-mer oligonucleotides containing a single CpG, f5CpG or m5CpG step gave yields of adducts that increased in the same order. The rates showed a correlation with the Hammett sigma constant of the methyl and fluoro substituents of the cytosine. Only the base-pair cytosine substituent influenced reactivity of guanine. CONCLUSIONS: The 2-amino group of guanine in the m5CpG sequence of DNA has a greater nucleophilic reactivity with mitomycin than CpG. Evidence is presented for a novel mechanism: transmission of the electron-donating effect of the 5-methyl substituent of the cytosine to guanine through H-bonding of the m5C.G base pair. The results explain the enhanced reaction of BPDE at m5CpG in DNA and the origin of G-T mutational hotspots in the p53 gene in cancer.  相似文献   

15.
Lung squamous cell carcinoma (LUSC) is a subtype of non-small cell lung cancer (NSCLC). LUSC occurs at the bronchi, shows a squamous appearance, and often occurs in smokers. To determine the epigenetic regulatory mechanisms of tumorigenesis, we performed a genome-wide analysis of DNA methylation in tumor and adjacent normal tissues from LUSC patients. With the Infinium Methylation EPIC Array, > 850,000 CpG sites, including ~350,000 CpG sites for enhancer regions, were profiled, and the differentially methylated regions (DMRs) overlapping promoters (pDMRs) and enhancers (eDMRs) between tumor and normal tissues were identified. Dimension reduction based on DMR profiles revealed that eDMRs alone and not pDMRs alone can differentiate tumors from normal tissues with the equivalent performance of total DMRs. We observed a stronger negative correlation of LUSC-specific gene expression with methylation for enhancers than promoters. Target genes of eDMRs rather than pDMRs were found to be enriched for tumor-associated genes and pathways. Furthermore, DMR methylation associated with immune infiltration was more frequently observed among enhancers than promoters. Our results suggest that methylation of enhancer regions rather than promoters play more important roles in epigenetic regulation of tumorigenesis and immune infiltration in LUSC.Subject terms: Cancer genomics, Non-small-cell lung cancer  相似文献   

16.
Wu Z  Luo J  Ge Q  Zhang D  Wang Y  Jia C  Lu Z 《Analytica chimica acta》2007,603(2):199-204
Aberrant DNA methylation of CpG site in the gene promoter region has been confirmed to be closely associated with carcinogenesis. In this present study, a new method based on the allele-specific extension on microarray technique for detecting changes of DNA methylation in cancer was developed. The target gene regions were amplified from the bisulfite treated genomic DNA (gDNA) with modified primers and treated with exonuclease to generate single-strand targets. Allele-specific extension of the immobilized primers took place along a stretch of target sequence with the presence of DNA polymerase and Cy5-labeled dGTP. To control the false positive signals, the hybridization condition, DNA polymerase, extension time and primers design were optimized. Two breast tumor-related genes (P16 and E-cadherin) were analyzed with this present method successfully and all the results were compatible with that of traditional methylation-specific PCR. The experiments results demonstrated that this DNA microarray-based method could be applied as a high throughput tool for methylation status analysis of the cancer-related genes, which could be widely used in cancer diagnosis or the detection of recurrence.  相似文献   

17.
A convenient, sensitive, and label-free method to determine the DNA methylation status of CpG sites of plasmid and human colon cancer cell has been developed. The system relies on highly selective single base extension reaction and significant optical amplification of cationic conjugated polyelectrolytes (CCP-1). The higher fluorescence resonance energy transfer efficiency between CCP-1 and fluorescein-labeled dGTP (dGTP-Fl) is correlated to the incorporation of dGTP-Fl into the probe DNA by single base extension reaction when the target/probe pair is complementary at the methylation site. As low as 1% methylation status can be determined by this new assay method. Because of the optical amplification property of CCP-1, the method exhibited high sensitivity with a concentration of analyte DNA at the picomolar level. The CCP-1 can form a complex with negatively charged DNA through electrostatic interactions, avoiding labeling the DNA target and probe by covalent linking. The isolation steps employed in other typical assays were avoided to simplify operations and increase repeatability. These features make the system promising for future use for early cancer diagnosis.  相似文献   

18.
Human bone marrow mesenchymal stem cells (MSCs) expanded in vitro exhibit not only a tendency to lose their proliferative potential, homing ability and telomere length but also genetic or epigenetic modifications, resulting in senescence. We compared differential methylation patterns of genes and miRNAs between early-passage [passage 5 (P5)] and late-passage (P15) cells and estimated the relationship between senescence and DNA methylation patterns. When we examined hypermethylated genes (methylation peak ≥ 2) at P5 or P15, 2,739 genes, including those related to fructose and mannose metabolism and calcium signaling pathways, and 2,587 genes, including those related to DNA replication, cell cycle and the PPAR signaling pathway, were hypermethylated at P5 and P15, respectively. There was common hypermethylation of 1,205 genes at both P5 and P15. In addition, genes that were hypermethylated at P5 (CPEB1, GMPPA, CDKN1A, TBX2, SMAD9 and MCM2) showed lower mRNA expression than did those hypermethylated at P15, whereas genes that were hypermethylated at P15 (MAML2, FEN1 and CDK4) showed lower mRNA expression than did those that were hypermethylated at P5, demonstrating that hypermethylation at DNA promoter regions inhibited gene expression and that hypomethylation increased gene expression. In the case of hypermethylation on miRNA, 27 miRNAs were hypermethylated at P5, whereas 44 miRNAs were hypermethylated at P15. These results show that hypermethylation increases at genes related to DNA replication, cell cycle and adipogenic differentiation due to long-term culture, which may in part affect MSC senescence.  相似文献   

19.
20.
p53 is a tumor suppressor gene and mutation of p53 is a frequent event in skin cancer. The wild-type p53 encodes for a 53-kD phosphoprotein that plays a pivotal role in regulating cell growth and cell death. The wt-p53 gene is also called "guardian of the genome", for its role in preventing the accumulation of genetic alterations, observed in cancer cells. The wild-type p53 protein plays a central role in the response of the cell to DNA damage. UV, present in sunlight, is one of the most ubiquitously present DNA damage inducing stress conditions to which skin cells are exposed. The wt-p53 protein accumulates in human skin cells in vitro and in human skin in vivo upon UV irradiation. This upregulation mounts a protective response against permanent DNA damage through transactivation of either cell cycle arrest genes and DNA repair genes or genes that mediate the apoptotic response. The molecular events which regulate the activity of the wt-p53 protein activity are only beginning to be described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号