首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A co-axial dual core resonant leaky optical fiber (DCRLF) is designed for inherent gain equalization of S-band erbium doped fiber amplifier (EDFA). Resonance tail of leakage loss of the fiber into the S-band region is utilized to flatten the gain. We have numerically studied the effect of various design parameters and their fabrication tolerances on gain flattening. We show 23.5 dB flat gain with ± 0.9 dB ripple over 30 nm bandwidth (1490–1520 nm) using 120 mW pump. The study should be useful in designing optical fiber amplifiers for optical communication system employing wavelength division multiplexing.  相似文献   

2.
An ultrasmall silicon periodic dielectric waveguides-based multimode interference all-optical logic gate has been proposed. The device consists of three 205 nm wide single-mode input waveguides, a 1.1 μm wide and 5.5 μm long multimode interference waveguide, and three 205 nm wide single-mode output waveguides. The total length and width of the device are 13.7 μm and 3.2 μm, respectively. By changing the states of the input optical signals and/or control signals launched into the device, multifunctional logic functions including OR, NAND, NOR, and NOT gates are performed, and each logic function can be realized at a specific output waveguide in accordance with the launched control signals. The ultrasmall multifunctional logic device has potential applications in high density photonic integrated circuits.  相似文献   

3.
A compact erbium-doped ring-shaped fiber laser suitable for fiber-optic sensing applications has been developed. The fiber laser utilized a tunable fiber Fabry–Perot filter as the tuning element and had a moderate milli-Watt level power output over almost the whole tuning range from 1530 to 1595 nm with a power fluctuation of 0.15 dB. High repetition rate scanning of laser operation over the whole tuning range was achieved at rates of up to 200 Hz. Moreover, the performance of the ring-shaped fiber laser configured with a high-concentration erbium-doped fiber was investigated for its larger wavelength tunability of over 100 nm. Output power characteristics of this ring-shaped fiber laser were also investigated when it worked in a scanning mode. A distorted power wavelength dependence, as well as some pulsing phenomenon were observed in scanning mode.  相似文献   

4.
In this paper, we designed and fabricated a four-channel optical add-drop multiplexer (OADM) based on dual racetrack resonators. The size of the fabricated device is only 2400 μm × 500 μm. The fabricated device can effectively and perfectly realize the signals upload and download. The free spectral range (FSR) of OADM is about 15.2 nm. We take the spectral responses near 1555 nm as an example. When the device acts as an optical drop multiplexer, the minimum insertion loss is 4.481 dB and the maximum extinction ratio is 31.931 dB. The maximum adjacent channels crosstalk is -9.845 dB. When the device acts as an optical add multiplexer, the minimum insertion loss is 0.944 dB and all of the extinction ratios are bigger than 25 dB. The maximum crosstalk is -16.531 dB which indicates the crosstalk can be neglected.  相似文献   

5.
Random fiber laser is obtained by end pumping a hollow optical fiber (HOF) filled with a dispersive solution of polyhedral oligomeric silsesquioxanes (POSS) nanoparticles and laser dye pyrromethene 597 (PM597) in carbon disulfide (CS2), in which the concentration is 1.5×10?2 M for PM597 and 18.5 wt% for POSS, respectively. It is found that the pump light at the one end of the liquid core optical fiber (LCOF) can pass the whole length of LCOF because the POSS nanoparticles were dispersed in CS2 at a molecular level (1–3 nm) with high stability and without sedimentation. Above the threshold pump energy (~0.81 mJ) the random fiber laser appears coherent and resonant feedback multimode lasing in the weakly scattering system. For the LCOF containing PM597 with the same concentration and no POSS nanoparticles, there occurs only ASE that can be observed under the same experimental condition.  相似文献   

6.
In this paper, basing on tap delay lines filter model and model spatial coupling theory, we build up a novel analytical model for an intensity modulated and direct detected multiple-input–multiple-output (IM-DDMIMO) system over multimode fiber. At the receiver side, time related zero forcing (ZF) equalization was used to recover signals. With this model, we theoretically and by simulation analyzed a 2 × 2 multimode fiber MIMO system utilizing offset launching scheme. It's found that two received streams can be well recovered by equalization. Compared with traditional single-input–single-output (SISO) system, such 2 × 2MIMO system can provide at least 5 dB Bit error rate (BER) performance improvement.  相似文献   

7.
A polarization-independent four-port wavelength-tunable optical add drop multiplexer (OADM) that utilizes non-polarizing relaxed beam splitters has been analyzed and demonstrated in Ti:LiNbO3 at the 1530 nm wavelength regime. The design utilizes an asymmetric interferometer configuration with strain induced index grating for polarization coupling along its arms that are shifted in position relative to each other. Experimental results of the filter response agree with theoretical predictions. Electrooptic tuning over a range of 15.7 nm at a rate of 0.08 nm/V has been measured. A temporal response < 46 ns to a 20 V step change in tuning voltage has been demonstrated. Fiber-to-fiber insertion loss is ~ 6.5 dB.  相似文献   

8.
9.
Sanjeev Dewra  R.S. Kaler 《Optik》2013,124(4):347-351
This paper presents an investigation on the performance of an optical network in terms of crosstalk based on optical add drop multiplexers with Mach–Zehnder interferometer (MZI), MZI-semiconductor optical amplifier (SOA) and MZI-fiber Braggs gratings (FBG) techniques obtained at 8 × 10 Gbps with 0.1 nm channel spacing wavelength division multiplexing (WDM) transmission with optical add drop multiplexer (OADM) placed at the 20 km point of a 40 km link. It is found that the signal can be transmitted with least BER and better Q-factor with MZI-FBG based OADM and the worst case is found with the MZI-SOA based OADM.  相似文献   

10.
A dual-wavelength ytterbium doped fiber laser with a narrowest spacing of 0.53 nm and widest spacing of 12.2 nm at 1064 nm is presented in this paper. An arrayed waveguide grating (AWG) together with an optical channel selector (OCS) have also been incorporated in the proposed setup that works as a switchable mechanism giving 23 different wavelength tunings. Producing an average output power of ?8 dB m and side mode suppression ratio (SMSR) of 59.65 dB, this dual-wavelength fiber laser is quite stable with an output power variance as low as 0.47 dB giving it an advantage due to its switching ability and stable dual-wavelength output powers.  相似文献   

11.
This paper presents a new design for an insensitive-polarization all-optical switch using 2 × 2 multimode interference (MMI) couplers. The switching structure can operate at central operating wavelength 1550 nm for both polarizations. A nonlinear directional coupler is used to realize the phase shifter and therefore switching mechanism is obtained. The transfer matrix method and beam propagation method are used to design and optimize the whole device structure.  相似文献   

12.
Using a chromatic-dispersion analysis method based on K–K transformation of the gain spectrum, we experimentally investigated the chromatic dispersion of semiconductor optical amplifier in detail within the wavelength range from 1530 nm to 1610 nm. Experimental results demonstrate that there are three typical dispersion regions, which are abnormal dispersion, flatten dispersion and normal dispersion region, and three zero-dispersion points, which exist around 1550 nm, 1580 nm and 1600 nm, over the wide wavelength range of 80 nm. With an increase in bias current on SOA, wavelengths of the three zero dispersion points all had a blue shift and the three near-zero dispersion regions corresponding became wider. However, the three near-zero dispersion regions corresponding became narrower when the input optical power increased. Therefore, the dispersion of SOA can be flexibly adjusted by changing the bias current and input optical power to SOA.  相似文献   

13.
A stable wavelength and wavelength spacing tunable dual-wavelength fiber laser based on an Opto-very-large-scale-integration (Opto-VLSI) processor and four-wave mixing (FWM) in a high-nonlinear photonic crystal fiber is experimentally demonstrated. The results show that the line width of the tunable dual-wavelength fiber laser is 0.02 nm, and the wavelength spacing can be tuned from 0.8 nm to 4 nm with a 0.15 nm step. Under the influence of the FWM, the uniformity is below 0.6 dB and the measured side mode suppression ratio (SMSR) is above 45 dB.  相似文献   

14.
A microring resonant wavelength demulti/multiplexer (MRRWDM) based on UV-written technology is designed. By using a double smooth octagon microrings structure, a 1 × 8 device around the central wavelength of 1550.918 nm with the wavelength spacing of 1.4 nm is presented. Analytical results based on coupled mode theory show that the 3 dB bandwidth is about 0.22 nm, the insertion loss is less than 0.7 dB, and the crosstalk is below ?47 dB for every output channel of the designed device without tolerances.  相似文献   

15.
《Current Applied Physics》2009,9(5):1125-1128
Sodium bitartrate monohydrate (SBTMH) a new organometallic nonlinear optical material, with molecular formula, [C4H5NaO6 · H2O] has been synthesized at ambient temperature. Spectral, thermal and optical techniques have been employed to characterize the new material. Bulk single crystals of size 13 × 4 × 4 mm3 of SBTMH have been grown by slow cooling method. The unit cell parameters of the grown crystal were determined by single crystal XRD. Functional groups present in the sample were identified by FTIR spectral analysis. Thermal stability of SBTMH was determined using TGA/DTA. The grown crystals exhibit nonlinear properties. The dielectric response of the crystal with varying frequencies was studied. The optical transparency range and the lower cut-off wavelength of the material were identified from the UV–vis–NIR absorption spectrum.  相似文献   

16.
A simple, continuously tunable dual-wavelength erbium-doped fiber ring laser (TDEDFL) structure for applications in high-speed communication systems is proposed and experimentally demonstrated. The dual-wavelength tuning range is 58 nm covering both the C-band and L-band from 1547 to 1605 nm. We can not only obtain a 45% improvement over previously reported tuning ranges, but also tune the wavelength of each lasing output independently. The power equalization of the dual-wavelength outputs is less than 1.5 dB. We obtain extremely stable power variation and wavelength fluctuation at room temperature. Using this fiber laser, a 10-Gb/s data transmission over a 25-km single-mode fiber (SMF) can be made available with a power penalty of 0.5 dB is demonstrated with this laser.  相似文献   

17.
C.H. Yeh  C.W. Chow  Y.F. Wu  S.S. Lu 《Optics Communications》2012,285(21-22):4470-4473
A new and energy-efficient tie-type architecture for stable and wavelength-tunable semiconductor optical amplifier (SOA)-based fiber ring laser is proposed and experimentally investigated. Here, the tie-type laser configuration is constructed by two Sagnac fiber loops. The proposed laser also can extend the lasing wavelength to longer wavelength (L-band) even only the C-band SOA is used. The proposed tie-type architecture has >5 dB higher output optical power at bias current of 80 mA when compared with the single ring SOA-based fiber laser. In this measurement, the output power, wavelength tuning range, side-mode suppression ratio (SMSR) and output stability of proposed fiber laser have also been analyzed and discussed.  相似文献   

18.
New hollow ring defect structure is introduced in photonic crystal fiber design for ultra- flat zero dispersion with very low waveguide losses. The hollow ring defect consisted of a central hole surrounded by a doped silica ring provides highly flexible defect engineering capabilities in photonic crystal fibers to achieve precise control of dispersion value and dispersion slope while independently maintaining low waveguide losses, which was not attainable in previous designs. A nearly flat zero dispersion of D=0±0.51 ps/nm km was obtained in the wavelength range of 1.44–1.61 μm with the maximum slope of ?2.7×10?2 ps/nm2 km. The confinement loss was less than 5.75×10?8 dB/m along with the bending loss of 2.8×10?6 dB/m for the radius of 10 mm, and splice loss of less than 1.57 dB to conventional single mode fiber at 1.55 μm.  相似文献   

19.
Chromium doped zinc oxide thin solid films were deposited on soda–lime glass substrates. The photoconductivity of the material and its influence on the optical behavior was evaluated. A non-alkoxide sol–gel synthesis approach was used for the preparation of the samples. An enhancement of the photoluminescence response exhibited by the resulting photoconductive films with embedded chromium nanoclusters is presented. The modification in the photoconduction induced by a 445 nm wavelength was measured and then associated with the participation of the optical absorptive response. In order to investigate the third order optical nonlinearities of the samples, a standard time-resolved Optical Kerr Gate configuration with 80 fs pulses at 830 nm was used and a quasi-instantaneous pure electronic nonlinearity without the contribution of nonlinear optical absorption was observed. We estimate that from the inclusion of Cr nanoclusters into the sample results a strong optical Kerr effect originated by quantum confinement. The large photoluminescence response and the important refractive nonlinearity of the photoconductive samples seem to promise potential applications for the development of multifunctional all-optical nanodevices.  相似文献   

20.
We propose refractive index sensors based on Ag-metalized nanolayer in microstructured optical fibers. The surface plasmon resonance modes and the sensing properties are theoretically analyzed using finite element method (FEM). In the calculation, Drude–Lorentz model is used to describe the Metal Dielectric constant. The calculation results show that the sensitivity of Ag-metalized SPR sensor can reach 1500 nm/RIU corresponding to a resolution of 6.67 × 10?5 RIU. Comparing with conventional detecting material-Au under the same structure, the sensitivity and 3 dB bandwidth of our device are better.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号