首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 626 毫秒
1.
Millimeter-wave (mm-wave) operated in W-band (75 GHz–0.11 THz) is of particular interests, since this frequency band can carry signals at much higher data rates. We demonstrate a 10 Gb/s optical carrier-distributed network with the wireless communication system. The mm-wave signal at carrier frequency of 0.1 THz is generated by a high speed near-ballistic uni-traveling carrier photodiode (NBUTC-PD) based transmitter (Tx), which is optically excited by optical short pulses. The optical pulse source is produced from a self-developed photonic mm-wave waveform generator (PMWG), which allows spectral line-by-line pulse shaping. Hence these optical pulses have high tolerance to fiber chromatic dispersion. The W-band 10 Gb/s wireless data is transmitted and received via a pair of horn antennas. The received 10 Gb/s data is envelope-detected and then used to drive an optical modulator at the remote antenna unit (RAU) to produce the upstream signal sending back to the central office (CO). 20 km single mode fiber (SMF) error free transmission is achieved. Analysis about the optimum repetition rate of the optical pulse source and the transmission performance of the upstream signal are also performed and discussed.  相似文献   

2.
Yufeng Shao  Nan Chi 《Optics Communications》2012,285(10-11):2580-2583
In this paper, we propose and experimentally demonstrate a novel optical packet switching scheme with one core router and two edge routers, in which an orthogonal frequency division multiplexing (OFDM) signal is generated as a label. In this experiment there are two transmission spans, each span consists of 50-km SMF-28 and an erbium-doped optical fiber amplifier (EDFA) without dispersion management. A 10 Gb/s on-off keying (OOK) optical payload and a 2.5 Gb/s OFDM optical label are generated, encapsulated, and transmitted in the first span. And then old label is replaced by new label, the generated new optical packet after transmission over the second span is detached and detected. The transmission performance of the optical label and payload is experimentally investigated at the ingress router, core router and egress router.  相似文献   

3.
A co-axial dual core resonant leaky optical fiber (DCRLF) is designed for inherent gain equalization of S-band erbium doped fiber amplifier (EDFA). Resonance tail of leakage loss of the fiber into the S-band region is utilized to flatten the gain. We have numerically studied the effect of various design parameters and their fabrication tolerances on gain flattening. We show 23.5 dB flat gain with ± 0.9 dB ripple over 30 nm bandwidth (1490–1520 nm) using 120 mW pump. The study should be useful in designing optical fiber amplifiers for optical communication system employing wavelength division multiplexing.  相似文献   

4.
Wenke Yu  Li Huo  Dan Lu  Caiyun Lou 《Optics Communications》2012,285(21-22):4302-4306
We propose a novel and simple scheme to achieve NRZ-to-RZ format conversion and simultaneous wavelength multicasting based on a single-stage dual-arm electro-optic Mach–Zehnder modulator (MZM) and a short single mode fiber (SMF). The format conversion and wavelength multicast process are achieved by chirp compensation under the condition of generation of optical flat frequency comb. 40 Gb/s NRZ-to-RZ conversion with one-to-five multiple-wavelength channel multicasting and transmission of the NRZ and the converted signals over 200 km dispersion-managed fiber-link are successfully demonstrated by numerical simulation. Research results show that 40 Gb/s 2 ps RZ signal with wavelength-preserving can be obtained after format conversion. The converted RZ signal presents good transmission performance and can easily be multiplexed to 160 Gb/s using optical time division multiplexing (OTDM) technology. All the multicast channels can be error free after 50 km transmission. Besides, the conversion operation can also greatly reduce the timing jitter of the degraded NRZ signal due to the retiming function of the proposed scheme.  相似文献   

5.
This paper proposes an all-optical orthogonal frequency division multiplexing (OFDM) multiplexer based on sawtooth wave driving LiNbO3 phase modulators by using serrodyne optical frequency translation. This multiplexer has high integration ability. The designing concept and implementation method have been discussed. A 16 × 10 Gb/s optical OFDM system is designed based on this multiplexer. Transmission characteristics, including tolerances of polarization mode dispersion (PMD) and nonlinear impairments have been studied numerically. Simulations show that the PMD tolerance is about 42 ps. The spectral efficiency reaches 1 bit/s/Hz with binary modulation format.  相似文献   

6.
The performance of dense wavelength division multiplexing secure communications with multiple chaotic optical channels is numerically analyzed in this paper. Taking the multiplexing of three chaotic optical channels as an example, we investigate the effects of second-order dispersion coefficient and nonlinear coefficient of fiber, channel spacing, message amplitude and bit rates on chaotic synchronization and multiplexing communications. Chaotic synchronization quality and Q-factor of the recovered message decrease with the increasing fiber length. A 1.25 Gbits/s non-return-to-zero (NRZ) sequence can be securely transmitted up to 60 km under the influence of the other two chaotic optical channels. Compared with the fiber dispersion, the cross-phase modulation is the primary factor which deteriorates the quality of communications. The results also show that the quality of communications is unlimited to the channel spacing as long as chaotic synchronization can be maintained. In addition, the effect of the amplitude of encrypted message on Q-factor and the confidentiality is demonstrated.  相似文献   

7.
We propose a novel optical carrier suppression (OCS) millimeter-wave generation scheme with data carried only by one sideband using a dual-drive Mach–Zehnder modulator (MZM) in radio-over-fiber system, and the transmission performance is also investigated. As the signal is transmitted along the fiber, there is no time shifting of the codes caused by chromatic dispersion. Simulation results show that the eye diagram keeps open and clear even when the optical millimeter-waves are transmitted over 110 km and the power penalty is about 1.9 dB after fiber transmission distance of 60 km. Furthermore, due to the +1 order sideband carrying no data, a full duplex radio-over-fiber link based on wavelength reuse is also built to simplify the base station. The bidirectional 2.5 Gbit/s data is successfully transmitted over a 40 km standard single mode fiber with less than 0.8 dB power penalty in the simulation. Both theoretical analysis and simulation results show that our scheme is feasible and we can obtain a simple cost-efficient configuration and good performance over long-distance transmission.  相似文献   

8.
A frequency division multiplexing optical time domain reflectometry (FDM-OTDR) is proposed and experimentally demonstrated. A phase modulator is employed to convert single frequency laser to multiple frequencies where four frequencies are adopted as the probe. Coherent detection between the backscattered Rayleigh signals of the four-frequency probe light pulses propagating in fiber under test (FUT) and original single frequency local oscillator (LO) only generates two intermediate frequencies (IFs) as the result of direct synthesizing of the same IFs. The two dominant IFs are processed by parallel computing method. Experimental results show that compared with conventional C-OTDR the FDM-OTDR is four times faster in fading noise reduction and can also bring a 1.9 dB single way dynamic range (SWDR) enhancement.  相似文献   

9.
A receiver with a monolithically integrated PIN photodiode in 0.5 μm BiCMOS technology has been developed for establishing an indoor 1.25 Gb/s optical wireless communication over a distance of 3.2 m using 180 μW of optical power.  相似文献   

10.
In order to improve RF frequency to achieve higher bandwidth and larger capacity, we propose a novel scheme to generate optical single sideband (SSB) millimeter-wave, in which frequency doubling of local radio frequency (RF) is obtained by using one integrated Mach–Zehnder modulator (MZM), and we theoretically investigate the generating principle of SSB. The optical SSB modulation scheme is employed to generate 60 GHz optical mm-wave and the 2.5 Gb/s baseband signal is simultaneously up-converted at the central station (CS) for downlink transmission, and the optical carrier is reused for uplink connection at the base station (BS). The full-duplex 2.5 Gb/s data are successfully transmitted over 40 km standard single-mode fiber (SMF-28) for both uplink connection and downlink connection with less than 2-dB power penalty. Results show the novel 60 GHz RoF system with optical SSB mm-wave signal generation using optical frequency doubling is feasible and we can obtain simple cost-efficient configuration and good performance over long-distance transmission.  相似文献   

11.
We propose a novel approach to generate quadrupling-frequency optical millimeter-wave using a dual-drive Mach–Zehnder modulator (MZM) in radio-over-fiber system. By properly adjusting the phase difference in the two modulation arms of MZM, the direct current (DC) bias, the modulation index and the gain of base-band signal, the quadrupling-frequency optical millimeter-wave with signal only carried by one second-order sideband is generated. As the signal is transmitted along the fiber, there is no time shift of the codes caused by chromatic dispersion. Theoretical analysis and simulation results show that the eye diagram keeps open and clear even when the quadrupling-frequency optical millimeter-wave are transmitted over 110 km and the power penalty is about 0.45 dB after fiber transmission distance of 60 km. Furthermore, due to another second-order sideband carrying no signals, a full duplex radio-over-fiber link based on wavelength reuse is also built to simplify the base station. The bidirectional 2.5 Gbit/s data is successfully transmitted over 40 km standard single mode fiber with less than 0.6 dB power penalty in the simulation.  相似文献   

12.
The direct-detected optical OFDM (DDO-OFDM) system in frequency-selective fading fiber channel with three different types of pilot interval design has been experimentally investigated. In these schemes, the 2.28 Gbit/s QPSK-OFDM signal is transmitted over 100 km fiber in the system. The experiment results show the scheme with sparse pilot as frequency increasing shows the best performance for DDO-OFDM system.  相似文献   

13.
The gain-flattened erbium-doped fiber amplifier (EDFA) is a key device for wavelength division multiplexing (WDM) modern optical network systems. A flat spectral gain EDFA has been achieved by controlling the doped fiber length and the pump power. The purpose of this paper is to study the variation of gain flattening over the temperature range from ?20 to +60 °C. The results obtained here indicate that gain flatness increases as temperature increases.  相似文献   

14.
In this paper, basing on tap delay lines filter model and model spatial coupling theory, we build up a novel analytical model for an intensity modulated and direct detected multiple-input–multiple-output (IM-DDMIMO) system over multimode fiber. At the receiver side, time related zero forcing (ZF) equalization was used to recover signals. With this model, we theoretically and by simulation analyzed a 2 × 2 multimode fiber MIMO system utilizing offset launching scheme. It's found that two received streams can be well recovered by equalization. Compared with traditional single-input–single-output (SISO) system, such 2 × 2MIMO system can provide at least 5 dB Bit error rate (BER) performance improvement.  相似文献   

15.
In this paper, we have proposed and demonstrated a novel lightwave centralized wavelength division multiplexing radio-over-fiber (WDM-RoF) system employing OFDM-CPM generation and carrier-reuse technique. The 4 × 2.5-Gb/s OFDM-CPM wireless signal and upstream OOK signal are transmitted over 25 km SMF-28 successfully. We further compare the OFDM-CPM signal with an OFDM-QPSK signal, and the experimental results suggest that OFDM-CPM modulation scheme will be a promising candidate for future WDM-RoF system.  相似文献   

16.
We have demonstrated a bidirectional reflective semiconductor optical amplifier (RSOA) based on wavelength division multiplexing ROF network utilizing an offset quadrature differential phase shift keying (OQPSK) signal for down-link and an on-off keying (OOK) signal re-modulated for up-link. A 50 km range colorless WDM-ROF without dispersion compensation was demonstrated for both 1 Gbit/s downstream and upstream signals. The BER performance of our scheme shows that our scheme is a practical solution to meet the data rate and cost-efficient of the optical links simultaneously in tomorrow's ROF access networks.  相似文献   

17.
A wavelength conversion based on high nonlinear microstructured fiber is demonstrated. Core diameter and pitch of the microstructured fiber used in this wavelength conversion method are 2.05 μm and 5.0 μm, respectively. Diameter of the air-holes in the fiber cladding is 4.50 μm, the nonlinear coefficient of the microstructured fiber is 112.2 W?1 km?1 and it is 60 times higher than that of a conventional dispersion-shift fiber, the length of the fiber is 100 m. Four-wave-mixing effect is improved in the high nonlinear microstructure fiber and then the efficiency of the wavelength conversion is improved also. 10 Gbps Not-Return-to-Zero (NRZ) modulation format and 10 Gbps Return-to-Zero (RZ) modulation format are converted effectively by our method. This study can provide a new alternative solution for high effective all-light wavelength conversion in high speed optical communication systems with multi-wavelengths and all-light optical networks.  相似文献   

18.
A fast adjustable gain equalization filter for dense wavelength division multiplexing (DWDM) system is reported. The method is based on a single long period fiber grating (LPG) which is excited by means of flexural acoustic waves. The equalization of a typical erbium doped fiber amplifier (EDFA) gain spectrum with a gain flatness of <0.3 dB over a 32 nm bandwidth is demonstrated. The filter adjustment is obtained by choosing different acoustic loads applied to the acousto-optic modulator, which presents a switching time of ~17 μs. A maximum power penalty of 0.84 dB, relatively to the back-to-back signal, was achieved.  相似文献   

19.
In this work, an advanced multifunctional optical switch based on multimode fibers is proposed. It can work as a 3 × 1 optical multiplexer/combiner, a 2 × 2 optical switch, a variable optical attenuator and a variable optical power splitter. All these functionalities can be developed in the same device without any hardware modification, only by using the proper ports and control electronics.The proposed switch has been developed for being used in the visible and near infrared wavelength range: 450–650 nm for optical fiber automobile applications, 650–850 nm for home broadband applications; and 850–1300 nm for multimode fiber access networks. Up to three different types of twisted nematic liquid crystal cells have been designed and fabricated for fulfilling these different wavelength ranges as part of the proposed device.The multifunctional switch has been implemented and experimentally tested. Crosstalk usually better than ? 15 dB at 532 nm, 660 nm and 850 nm, in any state has been measured. Switching is achieved at voltage levels of 4 Vrms. Fiber to fiber insertion losses when operating as a 2 × 2 optical switch, range from 10 to 15 dB within 200 nm wavelength range; with a non-optimized optics for collimation and coupling.  相似文献   

20.
A tunable optical oscillator that generates signals at the micro- to millimeter-wave band for wireless communication applications is suggested. It uses directly modulated semiconductor lasers, in which sideband modes and four-wave mixing (FWM) conjugate modes are injection locked by the simple control of the applied modulation power. The signals at 15 GHz with phase noise of below ?95 dBc/Hz at an offset frequency of 100 kHz were experimentally obtained. The frequency of the generated signal is tunable, and the maximum achievable signal frequency is limited mainly by the bandwidth of the receiver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号