首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
等离子弧焊接熔池演变过程的模拟和验证   总被引:1,自引:0,他引:1  
本文建立了描述等离子弧焊接熔池相变传热与流动的三维数理模型,考虑表面张力、电磁力和浮升力的作用,并针对等离子弧焊接特点,改进组合式体积热源模型,上部采用双椭球热源,下部采用圆锥体热源。重点分析了焊接熔池形状和温度场的演变过程,熔合线的模拟形状与实验焊缝吻合,较好地呈现了焊缝的凸起和熔池宽度,验证了数学模型和热源模型的正确性。本文还进一步开展了焊接功率和焊接速度的影响分析。研究结果表明,流动对焊缝形状的影响不容忽略,而表面张力在三个流动驱动力中占主导地位;焊接功率越大,焊接速度越小,越有利于焊件焊透,数值模拟得到优化的焊接功率和速度有益于实际焊接生产质量及效率。  相似文献   

2.
The influence of the carbon black on temperature distribution and weld profile, during laser transmission welding of polymers, is investigated in the present research work. A transient numerical model, based on conduction mode heat transfer, is developed to analyze the process. The heat input to the model is considered to be the volumetric Gaussian heat source. The computation of temperature field during welding is carried out for polycarbonates having different proportion of carbon black in polymer matrix. The temperature dependent material properties of polycarbonate are taken into account for modeling. The finite element code ANSYS® is employed to obtain the numerical results. The numerically computed results of weld pool dimensions are compared with the experimental results. The comparison shows a fair agreement between them, which gives confidence to use the developed model for intended investigation with acceptable accuracy. The results obtained have revealed that the carbon black has considerable influence on the temperature field distribution and the formation of the weld pool geometry.  相似文献   

3.
A three-dimensional transient numerical model was developed to study the temperature field and molten pool shape during continuous laser keyhole welding. The volume-of-fluid (VOF) method was employed to track free surfaces. Melting and evaporation enthalpy, recoil pressure, surface tension, and energy loss due to evaporating materials were considered in this model. The enthalpy-porosity technique was employed to account for the latent heat during melting and solidification. Temperature fields and weld pool shape were calculated using FLUENT software. The calculated weld dimensions agreed reasonable well with the experimental results. The effectiveness of the developed computational procedure had been confirmed.  相似文献   

4.
In the present study, the hybrid laser – TIG welding parameters for welding of 316LN austenitic stainless steel have been investigated by combining a pulsed laser beam with a TIG welding heat source at the weld pool. Laser power, pulse frequency, pulse duration, TIG current were presumed as the welding process parameters whereas weld bead width, weld cross-sectional area and depth of penetration (DOP) were considered as the process responses. Central composite design was used to complete the design matrix and welding experiments were conducted based on the design matrix. Weld bead measurements were then carried out to generate the dataset. Multiple regression models correlating the process parameters with the responses have been developed. The accuracy of the models were found to be good. Then, the desirability approach optimization technique was employed for determining the optimum process parameters to obtain the desired weld bead profile. Validation experiments were then carried out from the determined optimum process parameters. There was good agreement between the predicted and measured values.  相似文献   

5.
The physical process of deep penetration laser welding involves complex, self-consistent multiphase keyhole, metallic vapor plume, and weld pool dynamics. Currently, efforts are still needed to understand these multiphase dynamics. In this paper, a novel 3D transient multiphase model capable of describing a self-consistent keyhole, metallic vapor plume in the keyhole, and weld pool dynamics in deep penetration fiber laser welding is proposed. Major physical factors of the welding process, such as recoil pressure, surface tension, Marangoni shear stress, Fresnel absorptions mechanisms, heat transfer, and fluid flow in weld pool, keyhole free surface evolutions and solid–liquid–vapor three phase transformations are coupling considered. The effect of ambient pressure in laser welding is rigorously treated using an improved recoil pressure model. The predicated weld bead dimensions, transient keyhole instability, weld pool dynamics, and vapor plume dynamics are compared with experimental and literature results, and good agreements are obtained. The predicted results are investigated by not considering the effects of the ambient pressure. It is found that by not considering the effects of ambient pressure, the average keyhole wall temperature is underestimated about 500 K; besides, the average speed of metallic vapor will be significantly overestimated. The ambient pressure is an essential physical factor for a comprehensive understanding the dynamics of deep penetration laser welding.  相似文献   

6.
Internal modification process of glass by ultrashort laser pulse (USLP) and its applications to microwelding of glass are presented. A simulation model is developed, which can determine intensity distribution of absorbed laser energy, nonlinear absorptivity and temperature distribution at different pulse repetition rates and pulse energies in internal modification of bulk glass with fs- and ps-laser pulses from experimental modified structure. The formation process of the dual-structured internal modification is clarified, which consists of a teardrop-shaped inner structure and an elliptical outer structure, corresponding to the laser-absorbing region and heat-affected molten region, respectively. Nonlinear absorptivity at high pulse repetition rates increases due to the increase in the thermally excited free electron density for avalanche ionization. USLP enables crack-free welding of glass because the shrinkage stress is suppressed by producing embedded molten pool by nonlinear absorption process, in contrast to conventional continuous wave laser welding where cracks cannot be avoided due to shrinkage stress produced in cooling process. Microwelding techniques of glass by USLP have been developed to join glass/glass and Si/glass using optically contacted sample pairs. The strength of the weld joint as high as that of base material is obtained without pre- and post-heating in glass/glass welding. In Si/glass welding, excellent joint performances competitive with anodic bonding in terms of joint strength and process throughput have been attained.  相似文献   

7.
In keyhole fiber laser welding processes, the weld pool behavior is essential to determining welding quality. To better observe and control the welding process, the accurate extraction of the weld pool boundary as well as the width is required. This work presents a weld pool edge detection technique based on an off axial green illumination laser and a coaxial image capturing system that consists of a CMOS camera and optic filters. According to the difference of image quality, a complete developed edge detection algorithm is proposed based on the local maximum gradient of greyness searching approach and linear interpolation. The extracted weld pool geometry and the width are validated by the actual welding width measurement and predictions by a numerical multi-phase model.  相似文献   

8.
Using a specially designed experimental setup and properly choosing the sample material and the process parameters, we obtained a clear stable keyhole with a high-speed camera. On the basis of the actual keyhole profile, a conduction model with a cylindrical surface heat source has been developed under the assumption of the keyhole per thin layer being cylindrical. The model is numerically solved by the finite-difference method, the temperature field around the keyhole and the heat flux lost on the keyhole wall can be obtained. The effects of such factors as the shape and the size of the keyhole, the welding speed on the shape of the melt pool are studied. By comparing the laser intensity absorbed on the keyhole walls with the heat flux lost there, the mechanism of energy balance on the keyhole walls was investigated.  相似文献   

9.
In this research, a systematic investigation on laser transmission contour welding process is carried out using finite element analysis (FEA) and design of experiments (DoE) techniques. First of all, a three-dimensional thermal model is developed to simulate the laser transmission contour welding process with a moving heat source. The commercial finite element code ANSYS® multi-physics is used to obtain the numerical results by implementing a volumetric Gaussian heat source, and combined convection–radiation boundary conditions. Design of experiments together with regression analysis is then employed to plan the experiments and to develop mathematical models based on simulation results. Four key process parameters, namely power, welding speed, beam diameter, and carbon black content in absorbing polymer, are considered as independent variables, while maximum temperature at weld interface, weld width, and weld depths in transparent and absorbing polymers are considered as dependent variables. Sensitivity analysis is performed to determine how different values of an independent variable affect a particular dependent variable.  相似文献   

10.
Non-equilibrium energy transfer takes place in a solid substrate during a short-pulse laser irradiation and temperature field can be obtained analytically in the irradiated region. In the present study, laser short-pulse heating of metal nano-wire is considered and the analytical solution for two-dimensional axisymmetric nano-wire is presented. Since the absorption of the incident beam takes place in the skin of the irradiated surface, a volumetric heat source resembling the absorption process is incorporated in the analysis. Three different nano-wire materials are introduced in the analysis for the comparison reason. These include silver, chromium, and copper. It is found that temperature decay is gradual on the surface vicinity and temporal variation of the surface temperature follows almost the laser pulse intensity profile at the irradiated center.  相似文献   

11.
5083铝合金光纤激光-TIG复合焊接工艺研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用IPG YLS-6000光纤激光器和Fronius MagicWave3000job数字化焊机,对4mm厚5083H116铝合金进行了复合焊接试验。研究了电源特性、电流大小和热源间距等工艺参数对光纤激光-钨极惰性气体保护焊(TIG)复合焊接焊缝成形的影响规律,并分析了焊接接头的缺陷、显微硬度及力学性能。结果表明,光纤激光-TIG复合焊接5083铝合金,能够明显改善焊缝成形,提高焊接过程稳定性,特别是与变极性TIG电弧复合效果更为显著;光纤激光与变极性TIG电弧复合焊接,采用激光在前的方式,电弧电流150A,且热源间距不大于4mm,可以得到具有明亮金属光泽和均匀鱼鳞纹的焊缝,焊缝无气孔和裂纹缺陷,其表面有少量的下凹;复合焊接接头抗拉强度为318MPa,达到母材强度的93%,延伸率为7.6%,高于单光纤激光焊接,断口分析为韧性断裂。  相似文献   

12.
A pulse laser (Nd:YAG) interaction with an AZ91 magnesium alloy has been experimentally and numerically studied. A two-dimensional (2D) axisymmetric model of a molten pool created by a laser heat source has been developed. The elaborated model solves the coupled equations of a laminar fluid flow and heat transfer to demonstrate the flow behavior in the pool. This model takes into account the coupled effects of buoyancy and Marangoni forces, the thermophysic variation properties with temperature, and the radiation and convection heat losses. Concerning numerical results, the molten temperature distribution, velocity field and molten shape were discussed. It was noted that the Marangoni flow significantly alters the characteristics of the thawing and solidifying processes, and makes the molten pool wider and shallower. On the other hand, the experimental results showed that the material thermal properties have significant effects on the transport phenomena which takes place in the molten pool, and consequently on the formation as well as the shape of the pool. Finally, a comparison between the numerical and experimental results exhibited a good agreement.  相似文献   

13.
This paper surveys the capability of the hybrid laser-arc welding in comparison with lone laser welding for AA2198 aluminum alloy experimentally. In the present research, a continuous Nd:YAG laser with a maximum power of 2000 W and a 350 A electric arc were used as two combined welding heat sources. In addition to the lone laser welding experiments, two strategies were examined for hybrid welding; the first one was low laser power (100 W) accompanied by high arc energy, and the second one was high laser power (2000 W) with low arc energy. Welding speed and arc current varied in the experiments. The influence of heat input on weld pool geometry was surveyed. The macrosection, microhardness profile and microstructure of the welded joints were studied and compared. The results indicated that in lone laser welding, conduction mode occurred and keyhole was not formed even in low welding speeds and thus the penetration depth was so low. It was also found that the second approach (high laser power accompanied with low arc energy) is superior to the first one (low laser power accompanied with high arc energy) in hybrid laser-arc welding of Al2198, since lower heat input was needed for full penetration weld and as a result a smaller HAZ was created.  相似文献   

14.
In the present study, the hyperbolic heat conduction equation is derived from the Boltzmann transport equation and the analytical solution of the resulting equation appropriate to the laser short-pulse heating of a solid surface is presented. The time exponentially decaying pulse is incorporated as a volumetric heat source in the hyperbolic equation to account for the absorption of the incident laser energy. The Fourier transformation is used to simplify the hyperbolic equation and the analytical solution of the simplified equation is obtained using the Laplace transformation method. Temperature distribution in space and time are computed in steel for two laser pulse parameters. It is found that internal energy gain from the irradiated field, due to the presence of the volumetric heat source in the hyperbolic equation, results in rapid rise of temperature in the surface region during the early heating period. In addition, temperature decay is gradual in the surface region and as the depth below the surface increases beyond the absorption depth, temperature decay becomes sharp.  相似文献   

15.
采用高功率YAG激光焊接机对高性能三代像管管壳后端(4J34可伐合金)与荧光屏屏环(4J49可伐合金)进行封接试验。研究了激光功率、脉冲宽度对焊接接头成型及表面热扩散的影响规律。研究表明:4J34合金与4J49合金表面成型质量在设备最大工作电流100 A,激光功率195 W及脉宽1.7 ms时最好,相对于激光功率,脉冲宽度对焊缝熔宽和熔深的影响更加显著,接头焊接中心区硬化最为严重,其硬度最大,热影响区次之。  相似文献   

16.
激光腔靶辐射时间特性研究   总被引:2,自引:1,他引:1  
孙可煦  易荣清 《光学学报》1994,14(6):61-567
介绍了激光加热腔靶辐射时间特性研究。实验采用滤长为1.053μm,能量为30-750J,脉宽为600-1100ps的高斯型激光脉冲,辐照柱型腔靶,用两台具有一定和时间分辨的亚千X射线能谱仪,分别观察激光入射口和X光输运口的辐射时间特性,实验结果给出了腔靶源区发射X光时间过程及其与发射口面积,形状,发射能区等的关系。  相似文献   

17.
针对铝锂合金激光焊接产生的成形不良和气孔缺陷,探究不同焊接位置对焊缝成形及气孔的影响,并对比分析不同焊接位置熔池受力状态、熔融金属流动和小孔动态行为,解释缺陷形成及其抑制机理。研究发现:不同焊接位置熔池受力状态和熔融金属流动决定焊缝成形。平焊时焊缝成形差、下榻严重;横焊时背面焊缝不连续,有飞溅;立向上焊时背面焊缝内凹严重;立向下焊可得到最优焊缝成形和最优的气孔缺陷。焊缝气孔受小孔动态行为影响,不同焊接位置气孔随热输入的变化规律一致,气孔先增后减,在仅熔池透状态下有气孔最大值。立上焊时小孔不稳定,焊缝气孔多且分布杂乱;立向下焊时小孔稳定性高,气孔最少,主要分布在焊缝中心线上。  相似文献   

18.
This paper introduces a 3-D transient finite element model of laser cladding by powder injection to investigate the effects of laser pulse shaping on the process. The proposed model can predict the clad geometry as a function of time and process parameters including laser pulse shaping, travel velocity, laser pulse energy, powder jet geometry, and material properties. In the proposed strategy, the interaction between powder and melt pool is assumed to be decoupled and as a result, the melt pool boundary is first obtained in the absence of powder spray. Once the melt pool boundary is obtained, it is assumed that a layer of coating material is deposited on the intersection of the melt pool and powder stream in the absence of the laser beam in which its thickness is calculated based on the powder feedrate and elapsed time. The new melt pool boundary is then calculated by thermal analysis of the deposited powder layer, substrate and laser heat flux. The process is simulated for different laser pulse frequencies and energies. The results are presented and compared with experimental data. The quality of clad bead for different parameter sets is experimentally evaluated and shown as a function of effective powder deposition density and effective energy density. The comparisons show excellent agreement between the modeling and experimental results for cases in which a high quality clad bead is expected.  相似文献   

19.
This paper considers the micro-closed seam laser welding of two nearly eutectoid carbon steel grades. These materials are difficult to weld due to their poor ductility. In particular, in closed seam welding, the laser beam starts and finishes in the same point thus increasing the risk of cracks. A numerical simulation of micro-welding of nearly eutectoid steels by nanosecond pulsed laser is carried out to evaluate the weld pool dimension and the heat-affected zone extension. Optimized welding parameters and strategy are determined by means of simulation and they are successfully applied in the welding of a 1.0%C shaft and a 0.7%C gear.  相似文献   

20.
This paper presents a pulsed Nd: YAG laser-robot system for spot and seam welding of mild steel sheets. The study evaluates the laser beams behaviour for welding, and then investigates pulsed Nd: YAG laser spot and seam welding processes. High pulse power intensity is needed to initiate the key-hole welding process and a threshold pulse energy to reach full penetration. In seam welding, a weld consists of successive overlapping spots. Both high pulse energy and high average power are needed to keep the key-hole welding going. A 70% overlap is used to define overlapping spot welding as seam welding and to optimize process parameters because a high tensile strength joint compatible with the strength of the base material can be obtained when the overlap is ≥70%; at the same time a smooth seam with full penetration is obtained. In these cases, the joints in pulsed Nd: YAG laser welding are comparable in strength to those obtained with CO2 laser welding. Robot positioning and motion accuracies can meet the demands of Nd: YAG laser sheet metal welding, but its cornering accuracy affects the welding processes. The purpose of the study is to evaluate the YAG laser-robot system for production in the automotive industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号